Question

A cylinder with mass mm is initially released from the rest with the spring unstretched, and...

A cylinder with mass mm is initially released from the rest with the spring unstretched, and the block falls down until a point where it starts bouncing back (going upward). At this instant, what is the stretch amount in the spring ?

(Figure 1)

A cylinder with mass  is initially released from the rest with the spring unstretched, and the block falls down until a point where it starts bouncing back (going upward). At this instant, what is the stretch amount in the spring ?

mg/(4k)
4mg/k
mg/k
mg/(2k)
2mg/k

Homework Answers

Answer #1

The spring streches until the speed of the body is zero. The initial speed of the body is zero. There is no change in kinetic energy when the cylinder reaches the bottom most point during its journey.

Hence the loss in gravitational potential energy is used in increasing elastic potential energy.

Initially the spring is relaxed hence there is no initial elastic energy in spring there is only final elastic energy in spring

Let the body descends by x then the elongation in spring is also x.

mg x = 1/2 k x2

mg = 1/2 k x

x = 2mg / k

Last Option.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A spring with spring constant k = 45 N/m and unstretched length of L0 = 1...
A spring with spring constant k = 45 N/m and unstretched length of L0 = 1 is attached to the ceiling. A block of mass m = 2.5 kg is hung gently on the end of the spring. 1) How far does the spring stretch? .545 m 2) Now the block is pulled down until the total amount the spring is stretched is twice the amount found in the above question. The block is then pushed upward with an initial...
A mass weighing 32 pounds stretches a spring 2 feet. The mass is initially released from...
A mass weighing 32 pounds stretches a spring 2 feet. The mass is initially released from rest from a point 1 foot below the equilibrium position with an upward velocity of 2ft/sec. find the equation of the motion and solve it, determine the period and amplitude.
A cylinder of mass M and radius R is initially at rest on a horizontal surface...
A cylinder of mass M and radius R is initially at rest on a horizontal surface where there is some unknown friction. At 0=t it is pulled by a horizontal force 4 Mg F = and starts to roll without slipping. ( 2 2 1 MRI C = and g acts down). a- Find the linear acceleration a of the centre of the cylinder (in terms of g). b- Find the coefficient of friction  (in terms of given quantities)....
A 4.00 kg block hangs from a spring, extending it 16.0 cm from its unstretched position....
A 4.00 kg block hangs from a spring, extending it 16.0 cm from its unstretched position. (a.) What is the spring constant? = 245 N/m (b.) The block is removed, and a 0.500 kg mass is hung from the same spring. If the spring is then stretched and released, what is its period of oscillation? =.284 sec (c.) Write the unique equation of motion y(t) for the motion of the mass in part (b), assuming the mass was initially pulled...
A block of mass m=12 kg is released from rest on an incline with a coefficient...
A block of mass m=12 kg is released from rest on an incline with a coefficient of kinetic friction 0.25, and at an angle θ=30◦ . Below the block is a spring that can be compressed 2.5 cm by a force of 280 N. The block momentarily stops when it compresses the spring by 5.5 cm. (a) How far does the block move down the incline from its rest position to this stopping point? (b) What is the speed of...
A 469 g block is released from rest at height h0 above a vertical spring with...
A 469 g block is released from rest at height h0 above a vertical spring with spring constant k = 410 N/m and negligible mass. The block sticks to the spring and momentarily stops after compressing the spring 18.3 cm. How much work is done (a) by the block on the spring and (b) by the spring on the block? (c) What is the value of h0? (d) If the block were released from height 4h0 above the spring, what...
Name:__________________________________________Section____ A block of mass ? = 12.0 kg is released from rest on an incline...
Name:__________________________________________Section____ A block of mass ? = 12.0 kg is released from rest on an incline angled at θ = 30 degrees. The block slides down and incline of length ? = 1.40 m along the incline, which has a coefficient of kinetic friction between the incline and the block of ?? = 0.180. The block then slides on a horizontal frictionless surface until it encounters a spring with a spring constant of ? = 205 N/m. Refer to the...
A mass weighing 16 pounds stretches a spring 1 feet. It is initially released from a...
A mass weighing 16 pounds stretches a spring 1 feet. It is initially released from a point 1 foot above the equilibrium position with an upward velocity of 6 ft/s. Find the equation of motion. Determine the amplitude, period, and frequency of motion. (Use g = 32 ft/s2 for the acceleration due to gravity.)
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
A mass weighing 20 N stretches a spring 6 m. The mass is initially released from...
A mass weighing 20 N stretches a spring 6 m. The mass is initially released from rest from a point 8 m below the equilibrium position. (a) Find the position x of the mass at the times  t = π/12, π/8, π/6, π/4, and 9π/32 s.  (Use  g = 9.8 m/s2  for the acceleration due to gravity.)