Question

A positive charge +Q is distributed uniformly throughout the volume of an insulating sphere with radius...

A positive charge +Q is distributed uniformly throughout the volume of an insulating sphere with radius R. Find the electric potential V at a point P a distance r from the center of the sphere. Plot the electric potential V vs. the distance r from the center of the sphere for 0 < r < 2R

Homework Answers

Answer #1

Here, applying Gauss Law

=> E * A = Q/eo

=> electric field at distance ,r = kQr/R3

Thus,   electric potential at distance ,r =  

                                                            = (kQ/2R) * (3 - r2/R2)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Charge Q is distributed uniformly throughout the volume of an insulating sphere that has radius R....
Charge Q is distributed uniformly throughout the volume of an insulating sphere that has radius R. What is the potential difference between the center of the sphere and the surface of the sphere?
An excess positive charge Q is uniformly distributed throughout the volume of an insulating solid sphere...
An excess positive charge Q is uniformly distributed throughout the volume of an insulating solid sphere of radius R = 5.0cm. The magnitude of the bold E with bold rightwards harpoon with barb upwards on top-field at a point 10.0cm from the center of the sphere is given to be 4.5x10^6 N/C. a. What is the value (in units of μC) of charge Q? b. What is the magnitude of the -field at the surface of the sphere? c. What...
A solid insulating sphere has total charge Q and radius R. The sphere's charge is distributed...
A solid insulating sphere has total charge Q and radius R. The sphere's charge is distributed uniformly throughout its volume. Let r be the radial distance measured from the center of the sphere. If E = 440 N/C at r=R/2, what is E at r=2R? Express your answer with the appropriate units.
(physics 2) Charge Q is distributed uniformly over the volume of an insulating sphere of radius...
(physics 2) Charge Q is distributed uniformly over the volume of an insulating sphere of radius R. What is the potential difference between the center of the sphere and the surface of the sphere?
Charge Q=+ 3.00 μC is distributed uniformly over the volume of an insulating sphere that has...
Charge Q=+ 3.00 μC is distributed uniformly over the volume of an insulating sphere that has radius R = 6.00 cm .What is the potential difference between the center of the sphere and the surface of the sphere?
A conducting sphere of radius R carries a net positive charge Q, uniformly distributed over the...
A conducting sphere of radius R carries a net positive charge Q, uniformly distributed over the surface of the sphere. Assuming that the electric potential is zero at an infinite distance, what is the electric potential at a distance r = R/4 from the center of the sphere? Select one: kQ/R zero kQ/4R 4kQ/R 16kQ/R
A solid insulating sphere of radius a = 2 cm carries a net positive charge Q...
A solid insulating sphere of radius a = 2 cm carries a net positive charge Q = 9 nC uniformly distributed throughout its volume. A conducting spherical shell of inner radius b = 4 cm and outer radius c = 6 cm is concentric with the solid sphere and carries an initial net charge 2Q. Find: a. the charge distribution on the shell when the entire system is in electrostatic equilibrium. b. theelectricfieldatpoint:(i)AwithrA =1cm,(ii)BwithrB =3cm,(iii)CwithrC =5cm from the center of...
5. Consider a system consisting of an insulating sphere of radius a, with total charge Q...
5. Consider a system consisting of an insulating sphere of radius a, with total charge Q uniformly spread throughout its volume, surrounded by a conducting spherical inner radius b and outer radius c, having a total charge of -3Q. (a) How much charge is on each surface of the spherical conducting shell? (b) Find the electric potential for all r, assuming v=0 at infinity.
A nonconducting sphere has radius R = 2.54 cm and uniformly distributed charge q = +4.89...
A nonconducting sphere has radius R = 2.54 cm and uniformly distributed charge q = +4.89 fC. Take the electric potential at the sphere's center to be V0 = 0. What is V at radial distance from the center (a) r = 1.50 cm and (b) r = R? (Hint: See an expression for the electric field.)
A thin aluminum sphere of radius 25 cm has a charge of Q=150 nC uniformly distributed...
A thin aluminum sphere of radius 25 cm has a charge of Q=150 nC uniformly distributed on its surface. a) Assuming that the center of the sphere is at r=0, find expressions for the electric field for all regions of interest (r<R, and R>r), and make a plot of the electric field strength as a function of r. b) Find expressions for the electric potential for all regions of interest, and plot the electric potential as a function of r....