Question

Two RLC circuits have different values ​​of L and C. Is it possible for these two...

Two RLC circuits have different values ​​of L and C. Is it possible for these two circuits to have the same resonance frequency?
When an AC generator is connected to an LRC circuit, where do you ultimately does the energy come from? Where is it going? How do the values ​​of L, R and C affect the power supplied by the generator?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An RLC circuit with R = 24.6 ?, L = 325 mH, and C = 40.8...
An RLC circuit with R = 24.6 ?, L = 325 mH, and C = 40.8 µF is connected to an ac generator with an rms voltage of 24 V. Determine the average power delivered to this circuit when the frequency of the generator is each of the following. (a) equal to the resonance frequency W (b) twice the resonance frequency W (c) half the resonance frequency W
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C...
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C = 32 μF. The circuit is connected to a 10-V (rms), 600-Hz AC source. (a) Is the sum of the voltage drops across R, L, and C equal to 10 V (rms)? (b) Which is greatest, the power delivered to the resistor, to the capacitor, or to the inductor? (c) Find the average power delivered to the circuit.  W
Consider three different AC circuits (A−C) consist of a resistor, capacitor and inductor, connected in series...
Consider three different AC circuits (A−C) consist of a resistor, capacitor and inductor, connected in series to a function generator that creates a voltage of ∆v = 2.0 cos(ωt) Volts with ω = 2x104 rad/s. The circuits are: (A) R = 3 Ω; C = 25 μF; L = 300 μH (B) R = 4 Ω; C = 6.25 μF; L = 250 μH (C)R = 5 Ω; C = 5 μF; L = 500 μH Rank the circuits by...
We have a RLC series circuit. On this circuit R=10ohm, L=85mH and C=1uF regarding to this...
We have a RLC series circuit. On this circuit R=10ohm, L=85mH and C=1uF regarding to this values; * What should F0 has to be for making this circuit work at resonance position? * What is XL value with using F0 frequency? * What is I value when the circuit is at resonance position? * What are voltages on VR, VXL, and VXC components when the circuit is on resonance position? and phasor diagram? And regarding all of this questions what...
In an L-R-C series circuit, L = 0.391 H , R = 310 ? , and...
In an L-R-C series circuit, L = 0.391 H , R = 310 ? , and C = 5.99×10?8 F . When the ac source operates at the resonance frequency of the circuit, the current amplitude is 0.499 A . What is the voltage amplitude of the source? What is the amplitude of the voltage across the resistor? What is the amplitude of the voltage across the inductor? What is the amplitude of the voltage across the capacitor? What is...
A series RLC circuit is connected to a 240 V AC generator that operates at 99...
A series RLC circuit is connected to a 240 V AC generator that operates at 99 Hz. In the circuit, R = 4.325 kΩ and C = 0.71 mF. You must have a circuit diagram, wherever necessary, to receive full credit on this question. (a) (10 points) Determine the inductance, L, such that the current in the circuit is 19.1 mA. (b) (6 points) Using the value determined for L in part (a), determine the frequency at which the current...
A series RLC circuit (L = 24 mH, C = 40 μF, and R = unknown)...
A series RLC circuit (L = 24 mH, C = 40 μF, and R = unknown) has an AC generator with frequency f = 310 Hz and amplitude Emax = 120 V. The peak instantaneous current in the circuit is Imax = 1.4 A. What is φ = the phase angle between the driving EMF and the current in the circuit? Define φ to be positive if the voltage leads the current and φ to be negative if the current...
Energy in Resonant Circuits: Consider how the energy flows around different components of a circuit at...
Energy in Resonant Circuits: Consider how the energy flows around different components of a circuit at resonance. General Role of Circuit Components: In general, where is energy input into the circuit? Where is energy taken out of the circuit? Where is energy stored in the circuit? Analyzing Power through Components: To see how the energy flows between different components, we should understand what the power is through various components at different times. Consider a resonant circuit with (for simplicity) L=R=C=V0=1...
Consider a series RLC circuit where R = 651 Ω and C = 6.25 μF. However,...
Consider a series RLC circuit where R = 651 Ω and C = 6.25 μF. However, the inductance L of the inductor is unknown. To find its value, you decide to perform some simple measurements. You apply an ac voltage that peaks at 72.0 V and observe, using an oscilloscope, that the resonance angular frequency occurs at 39700 s–1. What is the inductance of the inductor in millihenrys?
In a series oscillating RLC circuit, R = 16.4 Ω, C = 30.9 μF, L =...
In a series oscillating RLC circuit, R = 16.4 Ω, C = 30.9 μF, L = 9.74 mH, and E = Emsinωdt with Em = 45.2 V and ωd = 2940 rad/s. For time t = 0.431 ms find (a) the rate Pg at which energy is being supplied by the generator, (b) the rate PC at which the energy in the capacitor is changing, (c) the rate PL at which the energy in the inductor is changing, and (d)...