Question

At t=0 a grinding wheel has an angular velocity of 21.0 rad/s . It has a...

At t=0 a grinding wheel has an angular velocity of 21.0 rad/s . It has a constant angular acceleration of 33.0 rad/s2 until a circuit breaker trips at time t = 1.70 s . From then on, it turns through an angle 440 rad as it coasts to a stop at constant angular acceleration.

1.Through what total angle did the wheel turn between t=0 and the time it stopped?

2.At what time did it stop?

3.What was its acceleration as it slowed down?

Homework Answers

Answer #1

here,

initial angular velocity , w0 = 21 rad/s

t1 = 1.7 s

the angular accelration , alpha1 = 33 rad/s

the angular speed at t1 , w1 = w0 + alpha1 * t1

w1 = 21 + 33 * 1.7 = 77.1 rad/s

a)

the total angle covered , theta = 440 + (w0 * t1 + 0.5 * alpha1 * t1^2)

theta = 400 * ( 21 * 1.7 + 0.5 * 33 * 1.7^2)

theta = 483.4 rad

b)

let the time taken to stop and angular accelration be t2 and alpha2

w^2 - w0^2 =2 * alpha2 * theta0

0 - 77.1^2 = 2 * alpha2 * 400

alpha2 = - 7.43 rad/s^2

and

0 = w1 + alpha2 * t2

0 = 77.1 - 7.43 * t2

t2 = 10.4 s

the time taken to stop is 10.4 s

c)

the accelration to slow down is - 7.43 rad/s^2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At t=0 a grinding wheel has an angular velocity of 21.0 rad/s . It has a...
At t=0 a grinding wheel has an angular velocity of 21.0 rad/s . It has a constant angular acceleration of 33.0 rad/s2 until a circuit breaker trips at time t = 2.40 s . From then on, it turns through an angle 433 rad as it coasts to a stop at constant angular acceleration. A-Through what total angle did the wheel turn between t=0 and the time it stopped? B-At what time did it stop? C-What was its acceleration as...
At t=0 a grinding wheel has an angular velocity of 30.0 rad/s . It has a...
At t=0 a grinding wheel has an angular velocity of 30.0 rad/s . It has a constant angular acceleration of 35.0 rad/s2 until a circuit breaker trips at time t = 1.90 s . From then on, it turns through an angle 440 rad as it coasts to a stop at constant angular acceleration. Q1: Through what total angle did the wheel turn between t=0 and the time it stopped? Q2: At what time did it stop? Q3: What was...
At time t=0 a grinding wheel has an angular velocity of 28.0 rad/s . It has...
At time t=0 a grinding wheel has an angular velocity of 28.0 rad/s . It has a constant angular acceleration of 28.0 rad/s2 until a circuit breaker trips at time t = 2.00 s . From then on, the wheel turns through an angle of 440 rad as it coasts to a stop at constant angular deceleration. A-Through what total angle did the wheel turn between t=0 and the time it stopped? Express your answer in radians. B-At what time...
At time t=0 a grinding wheel has an angular velocity of 29.0 rad/s . It has...
At time t=0 a grinding wheel has an angular velocity of 29.0 rad/s . It has a constant angular acceleration of 26.0 rad/s^2 until a circuit breaker trips at time t = 2.30 s . From then on, the wheel turns through an angle of 431 rad as it coasts to a stop at constant angular deceleration. Part A) Through what total angle did the wheel turn between t=0 and the time it stopped? Part B) At what time does...
At time t=0 a grinding wheel has an angular velocity of 23.0 rad/s . It has...
At time t=0 a grinding wheel has an angular velocity of 23.0 rad/s . It has a constant angular acceleration of 35.0 rad/s2 until a circuit breaker trips at time t = 2.10 s . From then on, the wheel turns through an angle of 436 rad as it coasts to a stop at constant angular deceleration Part A) Through what total angle did the wheel turn between t=0 and the time it stopped? Part B) At what time does...
At time t=0 a grinding wheel has an angular velocity of 26.0 rad/s . It has...
At time t=0 a grinding wheel has an angular velocity of 26.0 rad/s . It has a constant angular acceleration of 33.0 rad/s2 until a circuit breaker trips at time t = 2.40 s . From then on, the wheel turns through an angle of 431 rad as it coasts to a stop at constant angular deceleration. A) At what time does the wheel stop? B) What was the wheel's angular acceleration as it slowed down?
At a time t = 3.10 s , a point on the rim of a wheel...
At a time t = 3.10 s , a point on the rim of a wheel with a radius of 0.210 m has a tangential speed of 51.0 m/s as the wheel slows down with a tangential acceleration of constant magnitude 10.6 m/s2 . Calculate the wheel's constant angular acceleration.  rad/s^2   Calculate the angular velocity at t = 3.10 s. rad/s Calculate the angular velocity at t=0. rad/s Through what angle did the wheel turn between t=0 and t = 3.10...
At t = 0, a flywheel has an angular velocity of 4.3 rad/s, a constant angular...
At t = 0, a flywheel has an angular velocity of 4.3 rad/s, a constant angular acceleration of -0.26 rad/s2, and a reference line at ?0 = 0. (a) Through what maximum angle ?max will the reference line turn in the positive direction? (b) At what times t will the line be at ? = 1/2 ?max (consider both positive and negative values of t) (c) At what times t will the line be at ? = -10.7 rad (consider...
At t = 0, a flywheel has an angular velocity of 5.4 rad/s, an angular acceleration...
At t = 0, a flywheel has an angular velocity of 5.4 rad/s, an angular acceleration of -0.11 rad/s2, and a reference line at ?0 = 0. (a) Through what maximum angle ?max will the reference line turn in the positive direction? What are the (b) first and (c) second times the reference line will be at ? = ?max/3? At what (d) negative time and (e) positive time will the reference line be at ? = -13 rad?
At t = 0, a flywheel has an angular velocity of 3.5 rad/s, an angular acceleration...
At t = 0, a flywheel has an angular velocity of 3.5 rad/s, an angular acceleration of -0.48 rad/s2, and a reference line at ?0 = 0. (a) Through what maximum angle ?max will the reference line turn in the positive direction? What are the (b) first and (c) second times the reference line will be at ? = ?max/7? At what (d) negative time and (e)positive time will the reference line be at ? = -11 rad?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT