Question

A nonuniform beam 4.45 m long and weighing 1.08 kN makes an angle of 25 ∘...

A nonuniform beam 4.45 m long and weighing 1.08 kN makes an angle of 25 ∘ below the horizontal. It is held in position by a frictionless pivot at its upper-right end and by a cable a distance of 3.06 m farther down the beam and perpendicular to it (see Figure 11.31 in the textbook). The center of gravity of the beam is a distance of 1.97 m down the beam from the pivot. Lighting equipment exerts a downward force of 4.96 kN on the lower-left end of the beam. Find the tension T in the cable Find the vertical component of the force exerted on the beam by the pivot. Assume that the positive x and y axes are directed to the right and upward respectively Find the horizontal component of the force exerted on the beam by the pivot. Assume that the positive x and y axes are directed to the right and upward respectively.

Homework Answers

Answer #1

Although image is not given, but from the description what I could understand I am solving the problem.

Please find the below scanned images of solution:

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A nonuniform beam 4.44 m long and weighing 1.10 kN makes an angle of 25 ?...
A nonuniform beam 4.44 m long and weighing 1.10 kN makes an angle of 25 ? below the horizontal. It is held in position by a frictionless pivot at its upper-right end and by a cable a distance of 3.02 m farther down the beam and perpendicular to it (see Figure 11.31 in the textbook). The center of gravity of the beam is a distance of 2.04 m down the beam from the pivot. Lighting equipment exerts a downward force...
A 1,300–N uniform boom at ϕ = 60.0° to the horizontal is supported by a cable...
A 1,300–N uniform boom at ϕ = 60.0° to the horizontal is supported by a cable at an angle θ = 30.0° to the horizontal as shown in the figure below. The boom is pivoted at the bottom, and an object of weight w = 1,950 N hangs from its top. A boom of length l with its bottom end on a pivot is shown. The boom points up and to the right and makes an angle ϕ with the...
A hungry bear weighing 735 N walks out on a beam in an attempt to retrieve...
A hungry bear weighing 735 N walks out on a beam in an attempt to retrieve a basket of goodies hanging at the end of the beam (see the figure below). The beam is uniform, weighs 200 N, and is 5.00 m long, and it is supported by a wire at an angle of θ = 60.0°. The basket weighs 80.0 N. A horizontal plank is attached at the left end to a vertical wall. A rod with a pulley...
A 1,100–N uniform boom at ϕ = 65.5° to the horizontal is supported by a cable...
A 1,100–N uniform boom at ϕ = 65.5° to the horizontal is supported by a cable at an angle θ = 24.5° to the horizontal as shown in the figure below. The boom is pivoted at the bottom, and an object of weight w = 2,150 N hangs from its top. (a) Find the tension in the support cable. (b) Find the horizontal & vertical components of the reaction force exerted by the pivot on the boom. (Assume the positive...
A 560-N uniform rectangular sign 4.00 m wide and 3.00 m high is suspended from a...
A 560-N uniform rectangular sign 4.00 m wide and 3.00 m high is suspended from a horizontal, 6.00-m-long, uniform, 120-N rod as indicated in the figure below. The left end of the rod is supported by a hinge and the right end is supported by a thin cable making a 30.0° angle with the vertical. (Assume the cable is connected to the very end of the 6.00-m-long rod, and that there are 2.00 m separating the wall from the sign.)...
A person with weight 700 N stands d = 1.00 m away from the wall on...
A person with weight 700 N stands d = 1.00 m away from the wall on a ℓ = 9.00 m beam, as shown in this figure. The weight of the beam is 5,000 N. Define upward as the positive y direction and to the right as the positive x direction. (a) Find the tension in the wire. (Enter the magnitude only.) N (b) Find the horizontal component of the hinge force. (Indicate the direction with the sign of your...
A beam of electrons is shot into a uniform downward electric field of magnitude 1.10 103...
A beam of electrons is shot into a uniform downward electric field of magnitude 1.10 103 N/C. The electrons have an initial velocity of 1.01 107 m/s, directed horizontally. The field acts over a small region, 5.00 cm in the horizontal direction. (a) Find the magnitude and direction of the electric force exerted on each electron. (b) How does the gravitational force on an electron compare with the electric force? (c) How far has each electron moved in the vertical...
Two boxes are stacked, with box B placed on top of box A. If box A...
Two boxes are stacked, with box B placed on top of box A. If box A is pushed such that both boxes move with a decreasing speed, is there any friction on either box? (a) Kinetic friction on box A and no friction on box B (b) Kinetic friction on box A and static friction on box B (c) Kinetic friction on box A and kinetic friction on box B (d) Static friction on box A and kinetic friction on...
ch 6 1: It is generally a good idea to gain an understanding of the "size"...
ch 6 1: It is generally a good idea to gain an understanding of the "size" of units. Consider the objects and calculate the kinetic energy of each one. A ladybug weighing 37.3 mg flies by your head at 3.83 km/h . ×10 J A 7.15 kg bowling ball slides (not rolls) down an alley at 17.5 km/h . J A car weighing 1260 kg moves at a speed of 49.5 km/h. 5: The graph shows the ?-directed force ??...