Question

A box moving at 23 m/s encounters an inclined plane angled at 19 degrees to the...

A box moving at 23 m/s encounters an inclined plane angled at 19 degrees to the ground.

How far up the ramp does the block go?

Only include digits before the decimal point. Rounding rules apply

Homework Answers

Answer #1

Using energy conservation, let block reaches a maximum height of 'h' above the ground. Then,

Now, along the ramp let the distance covered be 'd'.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass m = 3.3 kg is on an inclined plane with a coefficient...
A block of mass m = 3.3 kg is on an inclined plane with a coefficient of friction μ1 = 0.39, at an initial height h = 0.53 m above the ground. The plane is inclined at an angle θ = 44°. The block is then compressed against a spring a distance Δx = 0.13 m from its equilibrium point (the spring has a spring constant of k1 = 35 N/m) and released. At the bottom of the inclined plane...
A box with 10 kg of mass slides down an inclined plane that is 1.7 m...
A box with 10 kg of mass slides down an inclined plane that is 1.7 m high and 3.5 m long. Due to friction the box reaches 3.0 m/s at the bottom of the inclined plane. Beyond the inclined plane lies a spring with 650 N/m constant. It is fixed at its right end. The level ground between the incline and the spring has no friction The box compressed the spring, got pushed back towards the incline by the spring....
A box with 11 kg of mass slides down an inclined plane that is 2.0 m...
A box with 11 kg of mass slides down an inclined plane that is 2.0 m high and 3.5 m long. Due to friction the box reaches 3.3 m/s at the bottom of the inclined plane. Beyond the inclined plane lies a spring with 650 N/m constant. It is fixed at its right end. The level ground between the incline and the spring has no friction The box compressed the spring, got pushed back towards the incline by the spring....
A box is on an inclined which has angle θ=30 degrees with horizon. There is a...
A box is on an inclined which has angle θ=30 degrees with horizon. There is a box with mass M=5 kg on the inclined. The coefficient of friction between the box and the surface of inclined is μ=0.2 . a) If the box is kicked to move up the inclined and start moving up with velocity V=15 m/s moving upward, how far d=? does It move along the surface of inclined? b) How much energy Q=? is lost while the...
A block with mass m = 14.6 kg slides down an inclined plane of slope angle...
A block with mass m = 14.6 kg slides down an inclined plane of slope angle 15.8 ° with a constant velocity. It is then projected up the same plane with an initial speed 4.35 m/s. How far up the incline will the block move before coming to rest?
A 4.25 kg block is projected at 5.40 m/s up a plane that is inclined at...
A 4.25 kg block is projected at 5.40 m/s up a plane that is inclined at 30.0° with the horizontal. The block slides some distance up the incline, stops turns around and slides back down to the bottom. When it reaches the bottom of the incline again, it is traveling with a speed of 3.80 m/s. If the coefficient of kinetic friction between the block and the plane is 0.500, how far up the incline did the block slide?
The initial speed of a 2.58-kg box traveling up a plane inclined 37° to the horizontal...
The initial speed of a 2.58-kg box traveling up a plane inclined 37° to the horizontal is 4.55 m/s. The coefficient of kinetic friction between the box and the plane is 0.30. (a) How far along the incline does the box travel before coming to a stop? ---m (b) What is its speed when it has traveled half the distance found in Part (a)? ---m/s
A box with a mass of 8.55 kg slides up a ramp inclined at an angle...
A box with a mass of 8.55 kg slides up a ramp inclined at an angle of 27.0° with the horizontal. The initial speed is 1.68 m/s and the coefficient of kinetic friction between the block and the ramp is 0.54. Determine the distance (in m) the block slides before coming to rest.
A 4.25 kg block is projected at 5.40 m/s up a plane that is inclined at...
A 4.25 kg block is projected at 5.40 m/s up a plane that is inclined at 30.0° with the horizontal. The block slides some distance up the incline, stops turns around and slides back down to the bottom. When it reaches the bottom of the incline again, it is traveling with a speed of 3.80 m/s. If the coefficient of kinetic friction between the block and the plane is 0.500, how far up the incline did the block slide? Please...
6) A 0.5 kg cart initially going with v=2 m/s goes down on an inclined plane...
6) A 0.5 kg cart initially going with v=2 m/s goes down on an inclined plane with 10 meters height. Inclined plane makes 30 degrees with the x-axis. a) What is the velocity of the block at the bottom of the ramp if friction is negligible b) What is the velocity if coefficient of friction is mu=0.1 vi = 2m/s
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT