Question

A 8.00kg block is sliding east at 5.00m/s on a horizontal, frictionless surface. It then undergoes...

A 8.00kg block is sliding east at 5.00m/s on a horizontal, frictionless surface. It then undergoes a collision with a 6.00kg block that was moving with an unknown initial velocity. After the collision, the 8.00kg block is moving north with a speed of 2m/s. Assuming the collision lasts for 40.0ms, a) Find the average force exerted on the 6.00kg block by the 8.00kg block.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A wooden block is at rest on a frictionless horizontal surface and is connected to a...
A wooden block is at rest on a frictionless horizontal surface and is connected to a spring (k =150 N/m). The mass of the wooden block is 0.10 kg. A bullet (mass 0.012 kg) and velocity 270 m/s is fired horizontally into the wooden block. After collision the bullet stays in the block. (a) Find the speed of the bullet-block system right after the collision. (b) If the bullet-block system compresses the spring by a maximum of d. Find d
A 500 g block, sliding on horizontal surface, collides head-on, and sticks to, a 200 g...
A 500 g block, sliding on horizontal surface, collides head-on, and sticks to, a 200 g block at rest. A) Find the speed of the combination after the collision if the 500 g block was was moving at 5.00 m/s before the collision. B) If the coefficient of kinetic friction between the blocks and the floor is 0.315, how much further with the blocks go before stopping?
Answers + steps 1. A 2.0 kg block sliding on a frictionless horizontal surface is attached...
Answers + steps 1. A 2.0 kg block sliding on a frictionless horizontal surface is attached to one end of a horizontal spring (k = 600 N/m) which has its other end fixed. The speed of the block when the spring is extended is 0.20 m is equal to 3.0 m/s. What is the maximum speed of this block as it oscillates? (Or speed when the spring is fully relaxed?) 2. A 10 kg object is dropped from rest. After...
A 3.0-kg block sliding on a frictionless horizontal surface is accelerated by a compressed spring. If...
A 3.0-kg block sliding on a frictionless horizontal surface is accelerated by a compressed spring. If the 200 N/m spring is initially compressed 10 cm, determine (a) the potential energy stored in the spring. As the block leaves the spring, find (b) the kinetic energy of the block, and (c) the velocity of the block.
A 6.0 kg block is sliding on a leve, frictionless surface at a speed of 5.0...
A 6.0 kg block is sliding on a leve, frictionless surface at a speed of 5.0 m/s when it undergoes a head-on, perfectly inelastic collision with a 4.0 kg block that is initially at rest on the top of a frictionless, 2.0 m high inclined plane. A) What is the speed of the combined blocks when they reach the bottom of the incline? B) If the ground at the bottom of the incline is level, and if the coefficient of...
A 20 kg block is moving to the right at 15 m/s along a horizontal frictionless...
A 20 kg block is moving to the right at 15 m/s along a horizontal frictionless road when it collides with a 40 kg block moving to the right at 5 m/s. After the collision, the 20 kg mass is moving to the right at 12 m/s. Find the velocity of the 40 kg mass after the collision.
A 4 kg block is sliding at an initial speed of 10 m/s across a surface,...
A 4 kg block is sliding at an initial speed of 10 m/s across a surface, encountering a constant friction force of 9 N. How much work is done on the block after it slides 20 cm? How fast is the block moving after sliding 20 cm? What's the total distance the block travels before coming to rest? What is the average power of friction on the block over the time it takes the block to come to rest? What...
A 2.5kg wooden block is held by a support on the surface of a frictionless incline....
A 2.5kg wooden block is held by a support on the surface of a frictionless incline. A 20g bullet is shot at the block from below, in a direction parallel to the incline, at a speed of 550m/s. (a) Calculate the velocity of the center of mass of the two bodies before the collision. (b) If the bullet lodges into the block, find the block’s velocity immediately after the collision. (c) At what maximum height (measured from the initial position)...
Block 1 has a mass of 0.35 kg and is on a frictionless surface. It has...
Block 1 has a mass of 0.35 kg and is on a frictionless surface. It has an initial speed of 1.2 m/s and it elastically collides with block 2 that was initially stationary. After the collision, the first block has a speed of 0.2 m/s in the opposite direction. a) What is the speed of block 2? b) What is the mass of block 2? c) If the collision time was 0.002 s, what was the average force on block...
Puck A (mA = 2kg) moving at 5m/s along Ox collides with puck B(mB = 3kg)...
Puck A (mA = 2kg) moving at 5m/s along Ox collides with puck B(mB = 3kg) which is initially at rest. After collision, puck B acquires a speed 1.5m/s at direction θB = 40 shown in figure. The objects move on a level and frictionless surface and the collision lasts for 0.25s. a) Find the velocity (use i, j vectors) of puck A after the collision…….. b) Find the magnitude of average net force exerted on puck A during collision….....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT