Question

A 10kg box and a 30kg box are placed side by side on a frictionless horizontal...

A 10kg box and a 30kg box are placed side by side on a frictionless horizontal surface. An ideal massless spring with a spring constant of 1920N/m is compressed by a distance of 50cm and placed tightly between the two boxes as shown in the figure. The spring and boxes are then released. Find the speeds of the two boxes after the spring has been released.

Homework Answers

Answer #1

The solution is given below.

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a 1kg box is placed in front of a spring that has a spring force constant...
a 1kg box is placed in front of a spring that has a spring force constant of 1000 N/m. The spring is compressed 50 cm and the box is placed in front of the spring. The spring is then released and the 1kg box slides along the horizontal, frintionless surface until it collides and sticks to a 2 kg box which is initially at rest. what is the speed of the boxes after the collision?
Two objects of masses m1 = 0.40 kg and m2 = 0.92 kg are placed on...
Two objects of masses m1 = 0.40 kg and m2 = 0.92 kg are placed on a horizontal frictionless surface and a compressed spring of force constant k = 290 N/m is placed between them as in figure (a). Neglect the mass of the spring. The spring is not attached to either object and is compressed a distance of 9.6 cm. If the objects are released from rest, find the final velocity of each object as shown in figure (b)....
A mass of 2.1 kilograms is placed on a horizontal frictionless surface against an uncompressed spring...
A mass of 2.1 kilograms is placed on a horizontal frictionless surface against an uncompressed spring with spring constant 1151.5 N/m. The inclined portion of the surface makes at an angle of 30 degrees to the horizontal and has a coefficient of kinetic friction of 0.27 with the mass. The mass is pushed against the spring until it is compressed a distance 0.15 and then released. How high (vertically), in meters, does the mass rise from the original height before...
A 11.2kg block and a 21.5kg block are resting on a horizontal frictionless surface. Between the...
A 11.2kg block and a 21.5kg block are resting on a horizontal frictionless surface. Between the two is squeezed a spring (spring constant = 1323N/m). The spring is compressed by 0.144m from its unstrained length and is not attached permanently to either block. What is the speed of the lighter block after the spring is released?
An 8.0-g bullet is shot into a 4.0-kg block, at rest on a frictionless horizontal surface...
An 8.0-g bullet is shot into a 4.0-kg block, at rest on a frictionless horizontal surface (see the figure). The bullet remains lodged in the block. The block moves into an ideal massless spring and compresses it by 8.7 cm. The spring constant of the spring is 2400 N/m. The initial velocity of the bullet is closest to
Two blocks with masses 3.0 kg and 5.0 kg are placed on a horizontal frictionless surface....
Two blocks with masses 3.0 kg and 5.0 kg are placed on a horizontal frictionless surface. A light spring is placed in a horizontal position between the blocks. The blocks are pushed together, compressing the spring, and then released from rest. After contact with the spring ends, the 5.0-kg mass has a speed of 2.0 m/s. How much potential energy was stored in the spring when the blocks were released?
A 500-g block is released from rest and slides down a frictionless track that begins 2.26...
A 500-g block is released from rest and slides down a frictionless track that begins 2.26 m above the horizontal, as shown in the figure below. At the bottom of the track, where the surface is horizontal, the block strikes and sticks to a light spring with a spring constant of 29.5 N/m. Find the maximum distance the spring is compressed. m A 500-g block rests at the top of a track on a horizontal platform. From this platform, the...
A 5.0 kg box slides down a 5.0 m high frictionless hill, starting from rest, across...
A 5.0 kg box slides down a 5.0 m high frictionless hill, starting from rest, across a 2.0 m wide horizontal surface, then hits a horizontal spring with spring constant 500 N/m. The ground under the spring is frictionless, but the 2.0 m wide horizontal surface is rough with a coefficient of kinetic friction of 0.25. a. What is the speed of the box just before reaching the rough surface? b. What is the speed of the box just before...
A 1.5 kg box moves back and forth on a horizontal frictionless surface between two different...
A 1.5 kg box moves back and forth on a horizontal frictionless surface between two different springs as shown. The box is initially pressed against the stronger spring compressing it 4.0 cm, and then is released from rest. (a) By how much will the box compress the weaker spring? (b) What is the maximum speed the box will reach?
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by...
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by a thin, light wire that passes without slippage over a frictionless pulley (the figure (Figure 1) ). The pulley has the shape of a uniform solid disk of mass 2.00 kg and diameter 0.520 m . Part A After the system is released, find the horizontal tension in the wire. Part B After the system is released, find the vertical tension in the wire....