Question

A mass m1 = 1 kg on a horizontal table is pulled by a string looped...

A mass m1 = 1 kg on a horizontal table is pulled by a string looped over a massless frictionless pulley and attached to another hanging mass m2. The coefficient of kinetic friction between the table and mass m1 is 0.5 and the coefficient of static friction is 0.6.

a) What is the minimum mass m2 that will start both masses moving?

b) What is the acceleration of the system with this minimum mass?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two blocks with mass m1 = 7.6 kg and m2 = 8.1 kg are connected by...
Two blocks with mass m1 = 7.6 kg and m2 = 8.1 kg are connected by a massless string over a frictionless and massless pulley. The angle of the incline is equal to 32.5°. The kinetic coefficient of friction between m1 and the incline is 0.11. What is the minimum value of the static friction coefficient that will prevent m1 from starting to move if it is at rest. Find the magnitude of the acceleration of the system if m1...
Objects with masses m1 = 12.0 kg and m2 = 8.0 kg are connected by a...
Objects with masses m1 = 12.0 kg and m2 = 8.0 kg are connected by a light string that passes over a frictionless pulley as in the figure below. If, when the system starts from rest, m2 falls 1.00 m in 1.48 s, determine the coefficient of kinetic friction between m1 and the table.    Express the friction force in terms of the coefficient of kinetic friction. Obtain an expression for the acceleration in terms of the masses and the...
7) A block of mass m1 = 38 kg on a horizontal surface is connected to...
7) A block of mass m1 = 38 kg on a horizontal surface is connected to a mass m2 = 21.6 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.24. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? Answer:    m/s2 (b) Determine the...
(6) A block of mass M1 resting on a 20.8° slope is shown. The block has...
(6) A block of mass M1 resting on a 20.8° slope is shown. The block has coefficients of friction μs = 0.792 and μk = 0.313 with the surface. It is connected via a massless string over a massless, frictionless pulley to a hanging block of mass M2 = 2.02 kg. (a) What is the minimum mass M1 that will remain stationary and not slip? (b) If this minimum mass is nudged ever so slightly, it will start being pulled...
Two blocks with masses M1 and M2 are connected by a massless string that passes over...
Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of 49.5° with coefficient of kinetic friction ?1 = 0.205. M2 has a mass of 5.45 kg and is on an incline of 31.5° with coefficient of kinetic friction ?2 = 0.105. Find the magnitude of the acceleration of M2 down the incline.
A hanging weight, with a mass of m1 = 0.370 kg, is attached by a string...
A hanging weight, with a mass of m1 = 0.370 kg, is attached by a string to a block with mass m2 = 0.850 kg as shown in the figure below. The string goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R1 = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As...
An object with mass m1 = 3.70 kg, rests on a frictionless horizontal table and is...
An object with mass m1 = 3.70 kg, rests on a frictionless horizontal table and is connected to a cable that passes over a pulley and is then fastened to a hanging object with mass m2 = 10.8 kg, as shown in the figure. Two objects labeled m1 and m2 are attached together by a cable. Object m1 lies on a horizontal table with the cable extending horizontally from its right side. The cable extends horizontally from the right side...
Two blocks with masses M1 and M2 are connected by a massless string that passes over...
Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=46.5∘ with coefficient of kinetic friction μ1=0.205. M2 has a mass of 6.05 kg and is on an incline of θ2=33.5∘ with coefficient of kinetic friction μ2=0.105. The two‑block system is in motion with the block of mass M2 sliding down the ramp. Find the magnitude...
A m1 = 1.7 kg box is on a frictionless θ = 43 ∘ slope and...
A m1 = 1.7 kg box is on a frictionless θ = 43 ∘ slope and is connected via a massless string over a pulley of mass M = 1.3 kg and radius R = 0.6 m to a hanging m2 = 9.3 kg weight. The coefficient of kinetic friction between the ramp and m1 is 0.2. The boxes are released from rest. Calculate the work done on m1 by kinetic friction as m2 drops by a distance of 1.7...
An object of mass m1 = 4.90 kg placed on a frictionless, horizontal table is connected...
An object of mass m1 = 4.90 kg placed on a frictionless, horizontal table is connected to a string that passes over a pulley and then is fastened to a hanging object of mass m2 = 7.40 kg as shown in the figure.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT