Question

In the Bohr model of the atom, what is true about the light emitted by an...

In the Bohr model of the atom, what is true about the light emitted by an atom?

1. The emitted photon’s frequency is the classic frequency at which an electron vibrates.

2. An electron accelerating around its orbit continuously emits radiation.

3. None of these

4. The energy of the emitted photon is equal to the difference in energy between the two orbits.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Light is emitted from a hydrogen atom as an electron in the atom jump from the...
Light is emitted from a hydrogen atom as an electron in the atom jump from the n=9 orbit to the n=3 orbit. What is the energy of the emitted photon in eV? (b) What are the frequency and wavelength of the photon? (c) In which frequency range (UV, visible, IR) is the emitted electromagnetic radiation? Justify your answer.
4. [15] Light is emitted from a hydrogen atom as an electron in the atom jump...
4. [15] Light is emitted from a hydrogen atom as an electron in the atom jump from the n=9 orbit to the n=3 orbit. (a) [7] What is the energy of the emitted photon in eV? (b) [4] What are the frequency and wavelength of the photon? (c) [4] In which frequency range (UV, visible, IR) is the emitted electromagnetic radiation? Justify your answer.
which statement below does not follow the Bohr Model? when an atom image light, electrons fall...
which statement below does not follow the Bohr Model? when an atom image light, electrons fall from a higher orbit into a lower orbit The energy emitted from a relaxing electron can have any wavelength electrons exist in specific quantized Orbitz when energy is absorbed by atoms the electrons are promoted to a higher energy Orbitz none of the above
4. (a) Use the Bohr model to calculate the frequency of an electron in the 149th...
4. (a) Use the Bohr model to calculate the frequency of an electron in the 149th Bohr orbit of the hydrogen atom. (b) Find the frequency of light emitted in the transition from the 149th orbit to the 145th orbit.
(a) Use the Bohr model to calculate the period and frequency of an electron in the...
(a) Use the Bohr model to calculate the period and frequency of an electron in the second Bohr orbit of the hydrogen atom. period frequency (b) What is the range of frequency of the light emitted by the hydrogen atom? minimum frequency maximum frequency
(a) Use the Bohr model to calculate the period and frequency of an electron in the...
(a) Use the Bohr model to calculate the period and frequency of an electron in the second Bohr orbit of the hydrogen atom. period? frequency? (b) What is the range of frequency of the light emitted by the hydrogen atom? minimum frequency? maximum frequency?
a) Use the Bohr model to calculate the period and frequency of an electron in the...
a) Use the Bohr model to calculate the period and frequency of an electron in the second Bohr orbit of the hydrogen atom. period frequency (b) What is the range of frequency of the light emitted by the hydrogen atom? minimum frequency 0 Hz maximum frequency ?????????? I just need help with finding the maximum frequency on part B. Thanks in advance! ps. Answer is not 3.29x10^15 Hz
The Bohr Model of the hydrogen atom proposed that there were very specific energy states that...
The Bohr Model of the hydrogen atom proposed that there were very specific energy states that the electron could be in. These states were called stationary orbits or stationary states. Higher energy states were further from the nucleus. These orbits were thought to be essentially spherical shells in which the electrons orbited at a fixed radius or distance from the nucleus. The smallest orbit is represented by n=1, the next smallest n=2, and so on, where n is a positive...
1). The Bohr Model of the hydrogen atom proposed that there were very specific energy states...
1). The Bohr Model of the hydrogen atom proposed that there were very specific energy states that the electron could be in. These states were called stationary orbits or stationary states. Higher energy states were further from the nucleus. These orbits were thought to be essentially spherical shells in which the electrons orbited at a fixed radius or distance from the nucleus. The smallest orbit is represented by n=1, the next smallest n=2, and so on, where n is a...
Answer the following questions using the Bohr model of the hydrogen atom. a) A hydrogen atom...
Answer the following questions using the Bohr model of the hydrogen atom. a) A hydrogen atom is the n = 3 excited state when its electron absorbs a photon of energy 4.40 eV. Draw a diagram roughly to scale, of relevant energy levels for this situation. Make sure to show and label the initial energy of the H atom in the n=3 state, the energy level at which this atom loses its electron, and kinetic energy of the electron. b)What...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT