Question

In the circuit shown in the figure below, let L = 5.00 H, R = 7.90...

In the circuit shown in the figure below, let L = 5.00 H, R = 7.90 Ω, and e m f = 120 V. What is the self-induced emf 0.200 s after the switch is closed?

___________________V

A rectangular circuit contains a battery of emf ℰ on its left side, with the positive terminal above the negative terminal. An open switch S is on its top side, an inductor L is on its right side, and a resistor R is on its bottom side.

Homework Answers

Answer #1

The answer is given below. Please upvote it

Thanks

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
onsider a series RC circuit as in the figure below for which R = 3.00 MΩ,...
onsider a series RC circuit as in the figure below for which R = 3.00 MΩ, C = 6.00 µF, and  = 27.0 V. The circuit is a rectangular loop. The bottom side of the loop has a battery labeled emf ℰ, oriented with the positive terminal to the right of the negative terminal. The right side has a resistor R. The top side contains an open switch S. The left side has a capacitor C. (a) Find the time constant...
Consider the circuit shown in the figure below, where R1 = 5.00 Ω, R2 = 8.00...
Consider the circuit shown in the figure below, where R1 = 5.00 Ω, R2 = 8.00 Ω, and = 6.00 V. A rectangular circuit begins at the positive terminal of a battery labeled emf ℰ, which is on the bottom side of the rectangle. The circuit extends up and to the left to a 2.00 Ω resistor on the top side of the rectangle. To the right of the 2.00 Ω resistor, the circuit splits into two parallel horizontal branches....
The figure below shows a capacitor, with capacitance C = 5.72 µF, and a resistor, with...
The figure below shows a capacitor, with capacitance C = 5.72 µF, and a resistor, with resistance R = 6.98 MΩ, connected in series to a battery, with e m f = 27.5 V. The circuit has a switch, which is initially open. The circuit is a rectangular loop. The bottom side of the loop has a battery labeled emf, oriented with the positive terminal to the right of the negative terminal. The right side has a resistor R. The...
A circuit is constructed with four resistors, one inductor, one battery and a switch as shown....
A circuit is constructed with four resistors, one inductor, one battery and a switch as shown. The values for the resistors are: R1 = R2 = 59 Ω, R3 = 89 Ω and R4 = 80 Ω. The inductance is L = 350 mH and the battery voltage is V = 12 V. The positive terminal of the battery is indicated with a + sign. 1) The switch has been open for a long time when at time t =...
Alicia, a physics student working on her lab assignment sets up the circuit shown in the...
Alicia, a physics student working on her lab assignment sets up the circuit shown in the figure. The reading of the voltmeter is 6.90 V and the reading of the ammeter is 2.90 mA. Assuming the voltmeter and ammeter are both ideal, calculate the following. A circuit starts near the bottom of a diagram at the positive terminal of a battery labeled emf ℰ. The circuit extends to the right to reach a resistor labeled 3.00 kΩ, extends up to...
A conducting bar of length L and resistance R is free to slide on frictionless conducting...
A conducting bar of length L and resistance R is free to slide on frictionless conducting rails of negligible resistance. The circuit is immersed in a uniform and steady magnetic field of strength B. Initially the bar is at rest and the switch is open. The switch is closed. The battery provides a steady voltage V. a) What is the direction of the current at the instant the switch is closed? b) What is the magnitude of the current at...
An inductor made as a solenoid of 300 turn with 5.00 cm long and 1.00 x10-4...
An inductor made as a solenoid of 300 turn with 5.00 cm long and 1.00 x10-4 m^2 cross section area is connected to a 75 resistor and 12 V battery. The switch is closed at time t = 0. (a) What is the inductive time constant of the circuit? (b) Calculate the current in the circuit 250 us after the switch is closed. (c) What is the magnitude and polarity of the back emf induced by the inductor 250 us...
Find the current in the 12-Ω resistor in the figure below. (Assume R1 = R3 =...
Find the current in the 12-Ω resistor in the figure below. (Assume R1 = R3 = 2.8 Ω, R2 = R4 = 7.8 Ω, ΔV = 23 V.) A A rectangular circuit begins at the positive terminal of a battery labeled ΔV which is on the bottom side of the rectangle. The positive terminal is to the left of the negative terminal. The circuit extends left, up and then right to a resistor labeled R3 on the top side of...
An inductor with an inductance of 2.00 H and a resistance of 7.90 Ω is connected...
An inductor with an inductance of 2.00 H and a resistance of 7.90 Ω is connected to the terminals of a battery with an emf of 5.80 V and negligible internal resistance. A) Find the initial rate of increase of current in the circuit. B) Find the rate of increase of current at the instant when the current is 0.540 A . C) Find the current 0.280 s after the circuit is closed. D) Find the final steady-state current.
, switch S1 is closed while switch S2 is kept open. The inductance is L =...
, switch S1 is closed while switch S2 is kept open. The inductance is L = 0.160 H , and the resistance is R = 120 Ω . When the current has reached its final value, the energy stored in the inductor is 0.300 J . What is the emf E of the battery? After the current has reached its final value, S1 is opened and S2 is closed. How much time does it take for the energy stored in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT