Question

Suppose that in a double slit experiment, you were to cover the upper-most slit with a...

Suppose that in a double slit experiment, you were to cover the upper-most slit with a sliver of crown glass (refractive index n ≈ 1.52) whose thickness t ensures that none of the light incident on the sliver is reflected back through the slit. You may assume a red laser beam of wavelength 650 nm.

In this given scenario: What are the phase changes in the reflected waves on the left and right side of the glass silver?

Homework Answers

Answer #1

So reflection at the interface of rarer (air) to denser (crown glass) results in phase chaange of pi in reflected ray while ray reflected from the denser (crown glass) to rarer (air ) changes no extra phase . So due this we write total path difference between this two rays is

here n is refractive index

Now for destructive interferance

we get

and thickness of silver plate then

for m=1 minimum thickness

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An anti-glaring uniform thin film of magnesium fluoride (MgF2, index of refraction 1.38) covers a crown...
An anti-glaring uniform thin film of magnesium fluoride (MgF2, index of refraction 1.38) covers a crown glass case of refractive index 1.52. This film has a thickness such that it cancels normally incident light of wavelength 525 nm that strikes the film surface from air. The film is thicker than the minimum thickness to achieve this cancellation. Over time, the MgF2 film wears away at a rate of 2.10 nm per year. What is the minimum number of years before...
(1)(A) You shine an orange laser (587 nm) on a double slit in an experiment you...
(1)(A) You shine an orange laser (587 nm) on a double slit in an experiment you perform in your physics lab. Measuring with a protractor you see that the interference pattern makes the first fringe at 11.0° with the horizontal. What is the separation between the slits? (B)What is the separation between two slits for which 650 nm light has its first minimum at an angle of 31.5°? (C)What is the wavelength of light falling on double slits separated by...
Interference with light We aim a red (620 nm) laser onto a small screen that has...
Interference with light We aim a red (620 nm) laser onto a small screen that has two slits that are 0.1 mm apart. Each slit has a width of 0.03 mm. The light coming out of the two slits is projected onto a big screen a distance X from the slits. In the photo on the right you can see the pattern that’s visible on the big screen. Using a ruler, we determine that the distance between two adjacent bright...
We aim a red (620 nm) laser onto a small screen that has two slits that...
We aim a red (620 nm) laser onto a small screen that has two slits that are 0.1 mm apart. Each slit has a width of 0.03 mm. The light coming out of the two slits is projected onto a big screen a distance X from the slits. In the photo on the right you can see the pattern that’s visible on the big screen. Using a ruler, we determine that the distance between two adjacent bright spots is equal...
1. Light traveling in air (index of refraction 1.00) falls onto a thin plastic film (index...
1. Light traveling in air (index of refraction 1.00) falls onto a thin plastic film (index of refraction 1.30) of unknown thickness that covers glass (index of refraction 1.50). What minimum non-zero thickness is needed such that wavelengths of 650 nm in air are bright in the reflection? 2. You observe two point sources of light that are spaced 10 cm apart which are each emitting light of wavelength of 590 nm. If the diameter of your pupil is 2...
In Young's double-slit experiment, 632.8 nm light from a HeNe laser passes through the two slits...
In Young's double-slit experiment, 632.8 nm light from a HeNe laser passes through the two slits and is projected on a screen. As expected, a central maximum (constructive interference) is observed at the center point on the screen. Now, a very thin piece of plastic with an index of refraction n=1.48 covers one of the the slits such that the center point on the screen, instead of being a maximum, is dark. Part A Determine the minimum thickness of the...
You are given a visible laser of wavelength λ to study interferences of light in the...
You are given a visible laser of wavelength λ to study interferences of light in the lab. Consider the 5 situations below. Treat each question independently 1.In air, you place a screen with two slits, separated by 0.86 mm, in front of the laser of wavelength 507.9 nm. You know that you will see an interference pattern if you place an observation screen some distance away. Determine what the distance between the plane of the fringes and the observation screen...
1) 2 point charges are separated by a distance of 8 cm. The left charge is...
1) 2 point charges are separated by a distance of 8 cm. The left charge is 48 mC and the right charge is -16mC. Using a full sheet of paper: draw the 2 charges separated by 8cm, centered in the sheet. (if you are missing a ruler estimate 8cm as ⅓ a paper sheet length). [6] a) Draw field lines to indicate the electric fields for this distribution. [4] b) Draw 3 equipotential surfaces, 1 each, that pass: -Through the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT