Question

A 200 kg block has three forces applied to it at the same time: F1 =...

A 200 kg block has three forces applied to it at the same time: F1 = 30.0 N force at 40.0°, F2= 150 N force at 95.0°, and F3 = 75.0 N force at 206.0°. (All angles are measured counterclock-

wise from the positive x -direction.) There is no gravitational force.

            a.         Find the x and y components of the net force on the block.

            b.         Find the magnitude and direction of the net force.

            c.         The block was initially at rest; after 14.5 s, what is its displacement (magnitude and direction)?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 200 kg block has three forces applied to it at the same time: F1 =...
A 200 kg block has three forces applied to it at the same time: F1 = 30.0 N force at 40.0°, F2= 150 N force at 95.0°, and F3 = 75.0 N force at 206.0°. (All angles are measured counterclock- wise from the positive x -direction.) There is no gravitational force.             a.         Find the x and y components of the net force on the block. b.         Find the magnitude and direction of the net force. c.         The block was initially at rest; after...
A 200 kg block has three forces applied to it at the same time: F1 =...
A 200 kg block has three forces applied to it at the same time: F1 = 30.0 N force at 40.0°, F2= 150 N force at 95.0°, and F3 = 75.0 N force at 206.0°. (All angles are measured counterclock- wise from the positive x -direction.) There is no gravitational force.             a.         Find the x and y components of the net force on the block.             b.         Find the magnitude and direction of the net force.             c.         The block was initially at rest; after...
A 200 Kg block has three forces applied to it at the same time: F1 =...
A 200 Kg block has three forces applied to it at the same time: F1 = 30.0 N force at 40.0 degrees, F2 =150 N force at 95.0 degrees, & F3 = 75.0 N force at 206.0 degrees. (Angles measured counterclockwise from positive x-direction) There is no gravitational force. a. Find the x & y components of the net force on the block b. Find the magnitutude and direction of the net force. c. The block was initially at rest;...
A force table applies three forces to a ring in the center of the table. When...
A force table applies three forces to a ring in the center of the table. When the forces are balanced, the ring is stationary in the center of the table. The net force equation F1+F2+F3=Fnet becomes F1+F2+F3=0 since a stationary object has no net force acting on it. This equation is true for the cartesian components as well: F1x+F2x+F3x=0 F1y+F2y+F3y=0 For each of the three problems below, calculate the force F3 that balances the table with the given F1 and...
Three forces acting on an object are given by F1 = (−1.9î + 6.25ĵ) N, F2...
Three forces acting on an object are given by F1 = (−1.9î + 6.25ĵ) N, F2 = (4.60î − 2.4ĵ) N, and F3 = (−50î) N. The object experiences an acceleration of magnitude 3.90 m/s2. (a) What is the direction of the acceleration? (b) What is the mass of the object? (c) If the object is initially at rest, what is its speed after 17.0 s? (d) What are the velocity components of the object after 17.0 s? (Let the...
Three forces acting on an object are given by F1 = (−1.55î + 7.15ĵ) N, F2...
Three forces acting on an object are given by F1 = (−1.55î + 7.15ĵ) N, F2 = (5.10î − 1.4ĵ) N, and F3 = (−43.5î) N. The object experiences an acceleration of magnitude 3.55 m/s2. a. What is the direction of the acceleration? (Counterclockwise from the x-axis) b. What is the mass of the object? (kg) c. If the object is initially at rest, what is its speed after 17.0 s? d. What are the velocity components of the object...
6.) Consider three force vectors F1 with magnitude 98 N and direction 9◦ , F2 with...
6.) Consider three force vectors F1 with magnitude 98 N and direction 9◦ , F2 with magnitude 83 N and direction 133◦ , and F3 with magnitude 76 N and direction 285◦ . All direction angles θ are measured from the positive x axis: counter-clockwise for θ > 0 and clockwise for θ < 0. What is the direction of F as an angle between the limits of −180◦ and +180◦ from the positive x axis with counterclockwise as the...
The above free body diagram, the forces are acting on a 4.70 kg object. The x-axis...
The above free body diagram, the forces are acting on a 4.70 kg object. The x-axis is tilted up from the horizontal by 39.5 degrees. The magnitudes of the three forces are given by: Force F1: 77.0 N Force F2: 74.0 N Force F3: 66.0 N. What is the magnitude of the acceleration of the object? https://gyazo.com/a6bdfe7746936d6ad1dec213f4c0fd51
If you apply three different, fixed forces to a body, in any direction on the x-y...
If you apply three different, fixed forces to a body, in any direction on the x-y plane, a) sketch how to apply these forces to achieve the largest possible resultant force b)sketch a way to apply these forces to get a 70-N resultant force, pointing in the +x direction c)Sketch how these forces magnitudes can add to give a zero net force Forces: F1=40 N; F2=50 N; F3=60 N Dont worry about the Part A and B. Just do Part...
Three forces act on an object (at the origin of a rectangular coordinate system). Force one,...
Three forces act on an object (at the origin of a rectangular coordinate system). Force one, F1, has a magnitude of 5.81 N and a direction Theta1 = 77.0 degrees, force two, F2, has a magnitude of 4.88 N and a direction of Theta2, = 156 degrees, and a force three F3, has a magnitude of 4.52 N and a direction of Theta 3 = 289 degrees. add these three vectors using the component method of vector addition. Call the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT