Question

A ball of mass m is attached to a string. It is spun around at a...

A ball of mass m is attached to a string. It is spun around at a distance r at 2 m/s, where the tension in the string is measured to be 10 N. If the ball is then spun around at 8 m/s, what is the new tension in the spring?

Homework Answers

Answer #1

When the ball is spun with the help of string. Then Tension in the string is exactly balanced by the centripetal force acting on the ball.

Now Radius of spinning= r

Initial Tension, T1= 10N

Initial speed, v1= 2m/s

Then Tension in the string, ......................(1)

Now if the speed is changed then new speed of ball, v2= 8m/s

Let changed Tension in the string is T2, then again we'll have

  ...............................(2)

Dividing equation 2 by 1, we'll get

Using all given values in above,

  

(ANS)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A tennis ball connected to a string is spun around in a vertical, circular path at...
A tennis ball connected to a string is spun around in a vertical, circular path at a uniform speed. The ball has a mass m = 0.154 kg and moves at v = 5.16 m/s. The circular path has a radius of R = 1.01 m 1) What is the magnitude of the tension in the string when the ball is at the bottom of the circle? 2) What is the magnitude of the tension in the string when the...
A tennis ball connected to a string is spun around in a vertical, circular path at...
A tennis ball connected to a string is spun around in a vertical, circular path at a uniform speed. The ball has a mass m = 0.15 kg and moves at v = 4.89 m/s. The circular path has a radius of R = 0.94 m What is the minimum velocity so the string will not go slack as the ball moves around the circle?
A small ball of clay of mass m hangs from a string of length L (the...
A small ball of clay of mass m hangs from a string of length L (the other end of which is fixed). A seond ball of clay of mass m/3 is to be launched horizontally out of a spring with spring constant k. Once launched, the second ball will collide with and stick to the hanging ball, and they'll follow a circular path around the fixed end of the string. A) Determine an expression for the distance (change in x)...
A ball with a mass of 1.50 kg is attached to the end of a string...
A ball with a mass of 1.50 kg is attached to the end of a string that is 0.400 m in length. You swing the ball so that it swings in a vertical circle, traveling at a speed of 4.80 m/s at the top of the circle. (a) Draw the free-body diagram of the ball. Make sure you label all your vectors and clearly indicate their direction. (b) What is the tension in the string when the ball is at...
A 200 g rubber ball is attached to a 1.0 m long string and released from...
A 200 g rubber ball is attached to a 1.0 m long string and released from an angle (theta). It swings down and at the very bottom has a perfectly elastic collision with a 1.0 kg block. The block is resting on a frictionless surface and is connected to a 20 cm long spring with spring constant 2000 N/m. After the collision, the spring compresses a maximum distance of 3.0 cm. From what angle was the ball released?
A solid sphere of mass, M, and radius, R, is rigidly attached to a strong thin...
A solid sphere of mass, M, and radius, R, is rigidly attached to a strong thin rod of radius r that passes through the sphere at a distance of R/2. A string wrapped around the rod pulls with tension T. The rod's moment of inertia is negligible. (a) Find an expression for the sphere's angular acceleration. (b) If the sphere has a mass of 5.5 kg and a radius of 25 cm, how much tension must be applied to the...
A ball with a mass of 270 g is tied to a light string that has...
A ball with a mass of 270 g is tied to a light string that has a length of 2.40 m. The end of the string is tied to a hook, and the ball hangs motionless below the hook. Keeping the string taut, you move the ball back and up until it is a vertical distance of 1.16 m above its equilibrium point. You then release the ball from rest, and it oscillates back and forth, pendulum style. As usual,...
A ball of mass of 10 kg is attached to one end of a string. The...
A ball of mass of 10 kg is attached to one end of a string. The other end of the string is attached to the ceiling. The ball swings and undergoes 5 full oscillations in 18.00 seconds. (a) Calculate the length of the string. _____ m (b) If the amplitude of motion of the pendulum is 15, calculate the total energy of the oscillator. _____ J
A block of mass m attached to a spring with spring constant k oscillates horizontally on...
A block of mass m attached to a spring with spring constant k oscillates horizontally on a friction less table. Its velocity is 20 cm/s when x = -5 cm. Taking m = 100 gm, and spring constant = 2.5 N/m, a) Find out the equations of position, velocity, and acceleration of the ball. Find also the total energy of the block when its velocity was 20 cm/s. b) Oscillating particles generate waves. What will be the equation of a...
1. An object of mass 1.2 kg is attached to a string of 0.83 m. When...
1. An object of mass 1.2 kg is attached to a string of 0.83 m. When this object is rotated around a horizontal circle, it completes 15 revolutions in 9.6 seconds. a. What is the period (T) of this motion? b. What is the tangential velocity of the object? c. What is the tension on the string? Hint: The tension on the string is the centripetal force that causes the circular motion.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT