Question

A rock of mass 0.309 kg falls from rest from a height of 23.4 m into...

A rock of mass 0.309 kg falls from rest from a height of 23.4 m into a pail containing 0.444 kg of water. The rock and water have the same initial temperature. The specific heat capacity of the rock is 1880 J/kg C°. Ignore the heat absorbed by the pail itself, and determine the rise in temperature of the rock and water in Celsius degrees.

Homework Answers

Answer #1

Given data

Mass of the rock

Height

Potential energy stored on the rock

                                

Specific heat capacity of the rock

Mass of water

Let the temperature rise

Heat absorbed by the water

According to law of conservation of energy the potential energy of the rock is transefered into heat energy

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Question 1: A rock of mass 0.453 kg falls from rest from a height of 23.0...
Question 1: A rock of mass 0.453 kg falls from rest from a height of 23.0 m into a pail containing 0.335 kg of water. The rock and water have the same initial temperature. The specific heat capacity of the rock is 1920 J/kg C°. Ignore the heat absorbed by the pail itself, and determine the rise in temperature of the rock and water in Celsius degrees. Question 2: A 33.7-kg block of ice at 0 °C is sliding on...
1. A 36.6-kg block of ice at 0 °C is sliding on a horizontal surface. The...
1. A 36.6-kg block of ice at 0 °C is sliding on a horizontal surface. The initial speed of the ice is 9.02 m/s and the final speed is 3.89 m/s. Assume that the part of the block that melts has a very small mass and that all the heat generated by kinetic friction goes into the block of ice, and determine the mass of ice that melts into water at 0 °C. 2. A rock of mass 0.396 kg...
A 218 kg rock sits in full sunlight on the edge of a cliff 5.05 m...
A 218 kg rock sits in full sunlight on the edge of a cliff 5.05 m high. The temperature of the rock is 31.7 ∘C. If the rock falls from the cliff into a pool containing 5.90 m3 of water at 16.5 ∘C, what is the final temperature of the rock-water system? Assume that the specific heat of the rock is 1010 J/(kg⋅K).
At a fabrication plant, a hot metal forging has a mass of 87.6 kg and a...
At a fabrication plant, a hot metal forging has a mass of 87.6 kg and a specific heat capacity of 434 J/(kg C°). To harden it, the forging is quenched by immersion in 749 kg of oil that has a temperature of 35.5 °C and a specific heat capacity of 2890 J/(kg C°). The final temperature of the oil and forging at thermal equilibrium is 65.0 °C. Assuming that heat flows only between the forging and the oil, determine the...
At a fabrication plant, a hot metal forging has a mass of 89.9 kg and a...
At a fabrication plant, a hot metal forging has a mass of 89.9 kg and a specific heat capacity of 422 J/(kg C°). To harden it, the forging is quenched by immersion in 793 kg of oil that has a temperature of 36.1 °C and a specific heat capacity of 2870 J/(kg C°). The final temperature of the oil and forging at thermal equilibrium is 50.6 °C. Assuming that heat flows only between the forging and the oil, determine the...
A rock with mass m = 2.60 kg falls from rest in a viscous medium. The...
A rock with mass m = 2.60 kg falls from rest in a viscous medium. The rock is acted on by a net constant downward force of F = 19.8 N (a combination of gravity and the buoyant force exerted by the medium) and by a fluid resistance force f=kv, where v is the speed in m/s and k = 2.69 N×s/m a)Find the initial acceleration a0. b) Find the acceleration when the speed is 3.50 m/s . c)Find the...
An insulated aluminum calorimeter vessel of 150 g mass contains 300 g of liquid nitrogen boiling...
An insulated aluminum calorimeter vessel of 150 g mass contains 300 g of liquid nitrogen boiling at 77 K. A metal block at an initial temperature of 303 K is dropped into the liquid nitrogen. It boils away 15.8 g of nitrogen in reaching thermal equilibrium. The block is then withdrawn from the nitrogen and quickly transferred to a second insulated copper calorimeter vessel of 200 g mass containing 500 g of water at 30.1 degrees celsius. The block coolds...
A 1.00g sample of the rocket fuel hydrazine N2H4 is burned in a bomb calorimeter containing...
A 1.00g sample of the rocket fuel hydrazine N2H4 is burned in a bomb calorimeter containing 12.00g of water. The temperature of the water and bomb calorimeter rises from 24.62 degrees Celsius to 28.16 degrees Celsius. Assuming the heat capacity of the empty bomb calorimeter is 837J/degrees Celsius, calculate the heat of combustion of 1 mol of hydrazine in the bomb calorimeter. (The specific heat capacity of water is 4.184 J/g*degree Celsius .
An ice chest at a beach party contains 12 cans of soda at 3.90 °C. Each...
An ice chest at a beach party contains 12 cans of soda at 3.90 °C. Each can of soda has a mass of 0.35 kg and a specific heat capacity of 3800 J/(kg C°). Someone adds a 6.09-kg watermelon at 26.2 °C to the chest. The specific heat capacity of watermelon is nearly the same as that of water. Ignore the specific heat capacity of the chest and determine the final temperature T of the soda and watermelon in degrees...
A ball of mass 5.93 kg is released from rest at height 7.62 m above the...
A ball of mass 5.93 kg is released from rest at height 7.62 m above the floor. It falls, hits the ground, and rebounds to height 3.2 m above the floor. Assume none of the losses are due to air friction. Find the work done against friction, in J, on the ball during the contact with the ground