Question

A tiny conducting sphere of radius R= 5 cm has n=10^10 excess electrons on it. What...

A tiny conducting sphere of radius R= 5 cm has n=10^10 excess electrons on it. What is the electric potential (with the right sign) due to this object at a distance d=4.3m from its center?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An isolated charged conducting sphere has a radius R = 11.0 cm. At a distance of...
An isolated charged conducting sphere has a radius R = 11.0 cm. At a distance of r = 25.0 cm from the center of the sphere the electric field due to the sphere has a magnitude of E = 4.90 ✕ 104 N/C. (a) What is its surface charge density (in µC/m2)? ___ µC/m2 (b) What is its capacitance (in pF)? ____ pF (c) What If? A larger sphere of radius 23.0 cm is now added so as to be...
A conducting sphere with a radius of R = 9.3 mm has a uniform and constant...
A conducting sphere with a radius of R = 9.3 mm has a uniform and constant surface charge density of teta= 10 nC / m2. What will be the magnitude of the electric field produced by that sphere at a distance from the center of the sphere der = 23.5 cm?
At a distance of 0.206 cm from the center of a charged conducting sphere with radius...
At a distance of 0.206 cm from the center of a charged conducting sphere with radius 0.100cm, the electric field is 430 N/C . What is the electric field 0.586 cmfrom the center of the sphere? At a distance of 0.186 cm from the axis of a very long charged conducting cylinder with radius 0.100cm, the electric field is 430 N/C . What is the electric field 0.604 cm from the axis of the cylinder? At a distance of 0.190...
Consider an insulating sphere of radius 5 cm surrounded by a conducting sphere of inner radius...
Consider an insulating sphere of radius 5 cm surrounded by a conducting sphere of inner radius 22 cm and outer radius 25 cm. Furthermore, suppose that the electric field at a point 13 cm from the center is measured to be 1540 N/C radially inward while the electric field at a point 44 cm from the center is 90 N/C radially outward. 1. Find the charge on the insulating sphere. Answer in units of C. 2.Find the net charge on...
A conducting sphere of radius R carries a net positive charge Q, uniformly distributed over the...
A conducting sphere of radius R carries a net positive charge Q, uniformly distributed over the surface of the sphere. Assuming that the electric potential is zero at an infinite distance, what is the electric potential at a distance r = R/4 from the center of the sphere? Select one: kQ/R zero kQ/4R 4kQ/R 16kQ/R
Immediately outside a conducting sphere of unknown charge Q and radius R the electric potential is...
Immediately outside a conducting sphere of unknown charge Q and radius R the electric potential is 190 V, and 10.0 cm further from the sphere, the potential is 130 V. (a) Determine the radius R of the sphere (in cm). cm (b) Determine the charge Q on the sphere (in nC). nC (c) The electric potential immediately outside another charged conducting sphere is 220 V, and 10.0 cm farther from the center the magnitude of the electric field is 410...
A net electric charge of 2.87 ?C is placed on a conducting sphere. The radius of...
A net electric charge of 2.87 ?C is placed on a conducting sphere. The radius of the sphere is R = 20.5 cm. What is the magnitude of the electric field at a distance of d1 = 26.8 cm away from the center of the sphere? Tries 0/12 What is the magnitude of the electric field at a distance of d2 = 14.2 cm away from the center of the sphere? Tries 0/12 The same amount of electric charge is...
A nonconducting sphere has radius R = 2.54 cm and uniformly distributed charge q = +4.89...
A nonconducting sphere has radius R = 2.54 cm and uniformly distributed charge q = +4.89 fC. Take the electric potential at the sphere's center to be V0 = 0. What is V at radial distance from the center (a) r = 1.50 cm and (b) r = R? (Hint: See an expression for the electric field.)
please solve the following :- A. A sphere of radius 3 cm, carries a volume charge...
please solve the following :- A. A sphere of radius 3 cm, carries a volume charge density of 5 − ??2, where d is constant. Find the value of d so the Electric field vector is zero outside the sphere? B.Two conducting spheres of radius 10 cm each. The center-to-center distance between the two spheres is 2 meters. Each sphere carries a charge of 16μC. Find the potential in the middle between the two spheres. C. Two conducting, concentric spheres...
A plastic sphere with a radius of 4 cm is surrounded by a concentric metal shell...
A plastic sphere with a radius of 4 cm is surrounded by a concentric metal shell of 7 cm inside radius, and 10 cm outside radius. The outer shell has a net charge of +5 Coulombs, while the plastic sphere inside has a uniformly distributed charge of -10 Coulombs. What is the electric potential relative to infinity at a distance 15 [cm] from the center of the plastic sphere i.e. outside the conducting shell, and why? 2b. What net charge...