Question

Derive the entropy change in the isothermal expansion of an ideal gas.

Derive the entropy change in the isothermal expansion of an ideal gas.

Homework Answers

Answer #1

let v1, p1 be the initial volume and pressure of gas

v2, p2 are the final volume and pressure of gas

we know from the first law of thermodynamics, Q= W + dU

dU= change in internal energy and for an isothermal process, dU=0

so Q = W

where w= work done in an isothermal process

W=n RT ln (V2/V1)

n= number of moles, R = universal gas constant, T= temperature of gas

also for an isothermal process, P1/P2= V2/V1

so W= n RT ln (P1/P2)

so Q= n RT ln (V2/V1) =n RT ln (P1/P2)

now change in entropy= S= Q/T

S=[n RT ln (V2/V1) ]/T

S= n R ln (V2/V1) or n R ln (P1/P2)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to...
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to volume V2 = 8V1 at temperature T = 300 K. Find (a) the work done by the gas and (b) the entropy change of the gas. (c) If the expansion is reversible and adiabatic instead of isothermal, what is the entropy change of the gas?
Exactly 1.27 moles of an ideal gas undergoes an isothermal expansion (T = 259 K) from...
Exactly 1.27 moles of an ideal gas undergoes an isothermal expansion (T = 259 K) from state A to state B and then returns to state A by another process. The volume of the gas in state B is three times its initial volume. (a) For the process AB, find the work done by the gas and its change in entropy. work = J change in entropy = J/K (b) Find the gas's change in entropy for the process BA....
Calculate the total change of entropy for an ideal monatomic gas expanding from a volume V...
Calculate the total change of entropy for an ideal monatomic gas expanding from a volume V into a volume 2V via: i) Free expansion ii) Quasi-static isothermal expansion iii) Quasi-static adiabatic expansion; iv) Do the results of (iii) surprise you? Comment on what these results mean in terms of reversible and irreversible processes.
When a fixed amount of ideal gas goes through an isothermal (constant temperature) expansion Group of...
When a fixed amount of ideal gas goes through an isothermal (constant temperature) expansion Group of answer choices its pressure must increase. its internal energy does not change. no heat enters or leaves the gas. the gas does no do work. its temperature must decrease.
Derive an expression for the isothermal reversible expansion of a van der Waals gas. Account physically...
Derive an expression for the isothermal reversible expansion of a van der Waals gas. Account physically for the way in which the coefficients a and b appear in the expression. Using Maple, plot the expression along with that for an ideal gas. For the van der Waals gas, use a case first where a = 0 and b = 5.11 x 10-2 mol-1 and where a = 4.2 L2 atm mol-2 and b = 0. Take Vi = 1.0 L,...
6. Consider an ideal gas that undergoes isothermal (constant temperature) expansion from state “1” to state...
6. Consider an ideal gas that undergoes isothermal (constant temperature) expansion from state “1” to state “2” along two different paths: a) reversibly and b) irreversibly. For these two paths, compare the relative magnitude (i.e. greater/same/lower) of the expansion work that ideal gas does to the surroundings. Make sure to justify your answer (suggestion to use a P-V diagram).
Derive the Sacker-Tetrode Equation which is the entropy expression for N indistinguishable ideal gas atoms of...
Derive the Sacker-Tetrode Equation which is the entropy expression for N indistinguishable ideal gas atoms of total energy U in a container of volume V.
A Joule expansion refers to the expansion of a gas from volume V1 to volume V2...
A Joule expansion refers to the expansion of a gas from volume V1 to volume V2 against no applied pressure, and is sometimes also called a free expansion. There is no work done, because the P of -PdV is zero. By insulating the system, this process can be done adiabatically, so there is no change in heat. For an ideal gas, the adiabatic process is also isothermal, so there is no change in thermodynamic energy, ∆U = 0 (which is...
Thermodynamics Question A Joule expansion refers to the expansion of a gas from volume V1 to...
Thermodynamics Question A Joule expansion refers to the expansion of a gas from volume V1 to volume V2against no applied pressure, and is sometimes also called a free expansion. There is no work done, because the P of -PdV is zero. By insulating the system, this process can be done adiabatically, so there is no change in heat. For an ideal gas, the adiabatic process is also isothermal, so there is no change in thermodynamic energy, ∆U = 0 (which...
Calculate the change in entropy for one mole of ideal gas which expands from an initial...
Calculate the change in entropy for one mole of ideal gas which expands from an initial volume of 2 L and initial temperature of 500 K to a final volume of 6 L under the following conditions. P(initial) refers to the pressure when T(initial)= 500K, V(initial)= 2 L. a) Irreversible expansion against a constant pressure of Pinitial/2 b) Irreversible expansion against a vacuum...a 'free expansion'. c) Adiabatic irreversible expansion against a constant pressure of Pfinal d) Adiabatic reversible expansion
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT