Question

If a Toyota with mass mT = 500 kg travelling with a velocity viT = 600...

If a Toyota with mass mT = 500 kg travelling with a velocity viT = 600 m/s crashed into another Honda of mass mH = 400 kg travelling with velocity viH= 400 m/s. After collision Toyota moved with vfT= 460 m/s then how fast is Honda moving after collision?

A. 755 m/s

B. 455 m/s

C. 675 m/s

D. 575 m/s

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A ball with a mass of 1.50 kg travelling +2.00 m/s collides with a stationary ball...
A ball with a mass of 1.50 kg travelling +2.00 m/s collides with a stationary ball with a mass of 1.00 kg. After the collision, the velocity of the 1.50 kg ball is +0.40 m/s. What is the velocity of the 1.00 kg ball after the collision? Select one: a. - 0.7 m/s b. + 3.6 m/s c. + 2.4 m/s d. + 1.8 m/s An 18 000 kg freight car travelling 1.75 m/s[E] collides with a 27 000 kg...
Car #1 with a mass of 1.50 x 103 kg is travelling east at a speed...
Car #1 with a mass of 1.50 x 103 kg is travelling east at a speed of 25.0 m/s. It collides in the middle of an intersection with Car #2 which has a mass of 2.50 x 103 kg and enters the intersection travelling north at a speed of 20.0 m/s. (a) Find the magnitude and direction of the velocity of the wreckage, assuming that after the collision the two cars stick together and that frictional forces can be neglected....
A glider of mass m1 = 8 kg has a velocity v1i = +2 m/s before...
A glider of mass m1 = 8 kg has a velocity v1i = +2 m/s before colliding with a second glider of mass m2 = 4 kg, moving with velocity v2i = -4 m/s. After the collision the first glider has a velocity of v1f = -1 m/s. This collision is Elastic Partially inelastic Totally inelastic Impossible A glider of mass m1 = 8 kg has a velocity v1i = +2 m/s before colliding with a second glider of mass...
A 4.0 kg object is travelling south at a velocity of 2.8 m/s when it collides...
A 4.0 kg object is travelling south at a velocity of 2.8 m/s when it collides with a 6.0 kg object travelling east at a velocity of 3.0 m/s. If these two objects stick together upon collision, at what velocity do the combined masses move?
Two balls are set to collide on a single track. Ball1 has a mass of 2.90-kg...
Two balls are set to collide on a single track. Ball1 has a mass of 2.90-kg and a velocity of 3.27-m/s Ball2 has a mass of 2.67-kg and a velocity of 1.27-m/s (NOT HEAD ON) After their elastic collision Ball1 is moving at 2.25-m/s in the opposite direction. How fast is Ball2 Moving?
A titanium sphere with a mass of 474 g travelling with a velocity of 5.4 m/s...
A titanium sphere with a mass of 474 g travelling with a velocity of 5.4 m/s overtakes a steel sphere with a mass of 6.72 g traveling at the same direction. The two sphere collides elastically and the titanium sphere slows to 0.5 m/s in the same direction after the collision. WHat was the initial velocity of the steel sphere before the collision? 1.2 3.5 4.7 5.9 1.7
A ball of mass 2 kg is moving with a velocity of 12 m/s collides with...
A ball of mass 2 kg is moving with a velocity of 12 m/s collides with a stationary ball of mass 6 kg and comes to rest. calculate the velocity of the 6 kg ball after the collision. (both balls are elastic)
Blocks A (mass 3.5 kg) and B (mass 5.5 kg) move on a frictionless, horizontal surface....
Blocks A (mass 3.5 kg) and B (mass 5.5 kg) move on a frictionless, horizontal surface. Initially, block B is at rest and block A is moving toward it at 2.0 m/s. The blocks are equipped with ideal spring bumpers (as in Example 8.10, Section 8.4). The collision is head-on, so all motion before and after the collision is along a straight line. (a) Find the maximum energy stored in the spring bumpers, in Joules. (b) Find the velocity of...
A 0.15 kg baseball collides with a 1.0 kg bat. The ball has a velocity of...
A 0.15 kg baseball collides with a 1.0 kg bat. The ball has a velocity of 40 m/s immediately before the collision. The center of mass of the bat also has a velocity of 40 m/s, but in the opposite direction, just before the collision. The coefficient of restitution between the bat and the ball is 0.50. Estimate how fast the baseball is moving as it leaves the bat following the collision.
a 1.50 kg " particle A" travelling with velocity ua= 0.8im/s collides with a 3.60 kg...
a 1.50 kg " particle A" travelling with velocity ua= 0.8im/s collides with a 3.60 kg with velocity ub = 2.2j m/s . there is a short collision that lasts 0.5 seconds after the two particles stick to each other and move together . Find their velocities in unit vector notation while they move together find the average force in unit vector notation on particle A during collision time Draw a clear digram and show Ox and Oy axes plz...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT