Question

wheel is rotating about an axis that is in the z-direction. The angular velocity ?z is...

wheel is rotating about an axis that is in the z-direction. The angular velocity ?z is -6.00 rad/sat t = 0, increases linearly with time, and is +4.00 rad/s at t = 12.0 s . We have taken counterclockwise rotation to be positive.

Part A

Part complete
Is the angular acceleration during this time interval positive or negative?

positive
negative

SubmitPrevious Answers
Correct
The angular acceleration is positive, since the angular velocity increases steadily from a negative value to a positive value.

Part B

How long is the time interval during which the speed of the wheel is increasing?
Express your answer with the appropriate units.

t1 =
7.237.23ss

SubmitPrevious AnswersRequest Answer
Incorrect; Try Again; 8 attempts remaining

Part C

How long is the time interval during which the speed of the wheel is decreasing?
Express your answer with the appropriate units.

t2 =

SubmitRequest Answer

Part D

What is the angular displacement of the wheel from t = 0 s to t = 12.0 s ?

? =
  rad  

Homework Answers

Answer #1

***************************************************************************************************
This concludes the answers. If you need any more clarification, modification or correction, feel free to ask.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A wheel is rotating about an axis that is in the z-direction. The angular velocity ?z...
A wheel is rotating about an axis that is in the z-direction. The angular velocity ?z is ?6.00rad/sat t=0, increases linearly with time and is +8.00rad/s at t=7.00s. We have taken counterclockwise rotation to be positive Q1: Is the angular acceleration during this time interval positive or negative? Q2: Find the duration of the time interval when the speed of the wheel is increasing. Q3: Find the duration of the time interval when the speed of the wheel is decreasing....
A wheel is rotating about an axis that is in the z-direction. The angular velocity ωz...
A wheel is rotating about an axis that is in the z-direction. The angular velocity ωz is -6.00 rad/s at t = 0, increases linearly with time, and is +4.00 rad/s at t = 19.0 s . We have taken counterclockwise rotation to be positive. 1- How long is the time interval during which the speed of the wheel is increasing? 2- How long is the time interval during which the speed of the wheel is decreasing? 3- What is...
The angular position of a point on the rim of a rotating wheel is given by...
The angular position of a point on the rim of a rotating wheel is given by ? = 6.0t - 2.0t2 + t3, where ? is in radians and t is in seconds. (a) What is the angular velocity at t = 2 s? rad/s (b)What is the angular velocity at t = 4.0 s? rad/s (c) What is the average angular acceleration for the time interval that begins at t = 2 s and ends at t = 4.0...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.280 rev/s . The magnitude of the angular acceleration is 0.893 rev/ s 2 . Both the the angular velocity and angular accleration are directed clockwise. The electric ceiling fan blades form a circle of diameter 0.710 m . Part A Compute the fan's angular velocity magnitude after time 0.191 s has passed. Express your answer numerically in revolutions per second. Part B...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.290 rev/s . The magnitude of the angular acceleration is 0.887 rev/s2 . Both the the angular velocity and angular accleration are directed clockwise. The electric ceiling fan blades form a circle of diameter 0.760 m . a.) Compute the fan's angular velocity magnitude after time 0.209 s has passed. Express your answer numerically in revolutions per second. b.) Through how many revolutions...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.220 rev/s. The magnitude of the angular acceleration is 0.916 rev/s2. Both the angular velocity and angular acceleration are directed counterclockwise. The electric ceiling fan blades form a circle of diameter 0.710 m. Compute the fan's angular velocity magnitude after time 0.192 ss has passed. (Express your answer numerically in revolutions per second.) Through how many revolutions has the blade turned in the...
A wheel is spinning about a horizontal axis, with angular speed 140 rad/s and with its...
A wheel is spinning about a horizontal axis, with angular speed 140 rad/s and with its angular velocity pointing east. a.) Find the magnitude of its angular velocity after an angular acceleration of 34 rad/s2 , pointing 68 ∘ west of north, is applied for 5.5 s . Express your answer using two significant figures. b.) Find the direction of its angular velocity. Express your answer using two significant figures.
At time t=0 a grinding wheel has an angular velocity of 28.0 rad/s . It has...
At time t=0 a grinding wheel has an angular velocity of 28.0 rad/s . It has a constant angular acceleration of 28.0 rad/s2 until a circuit breaker trips at time t = 2.00 s . From then on, the wheel turns through an angle of 440 rad as it coasts to a stop at constant angular deceleration. A-Through what total angle did the wheel turn between t=0 and the time it stopped? Express your answer in radians. B-At what time...
At time t=0 a grinding wheel has an angular velocity of 29.0 rad/s . It has...
At time t=0 a grinding wheel has an angular velocity of 29.0 rad/s . It has a constant angular acceleration of 26.0 rad/s^2 until a circuit breaker trips at time t = 2.30 s . From then on, the wheel turns through an angle of 431 rad as it coasts to a stop at constant angular deceleration. Part A) Through what total angle did the wheel turn between t=0 and the time it stopped? Part B) At what time does...
At time t=0 a grinding wheel has an angular velocity of 23.0 rad/s . It has...
At time t=0 a grinding wheel has an angular velocity of 23.0 rad/s . It has a constant angular acceleration of 35.0 rad/s2 until a circuit breaker trips at time t = 2.10 s . From then on, the wheel turns through an angle of 436 rad as it coasts to a stop at constant angular deceleration Part A) Through what total angle did the wheel turn between t=0 and the time it stopped? Part B) At what time does...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT