Question

A dumbbell is made out of two 4.5 kg masses connected by a rod of negligible...

A dumbbell is made out of two 4.5 kg masses connected by a rod of negligible mass which is 30 cm long. How much work, in joules, is required to take the dumbbell from rest to an angular speed of 5.0 rad/s? Treat the masses as particles: rotation is about the center of mass.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A dumbbell is made out of two 4.5 kg masses connected by a road of negligible...
A dumbbell is made out of two 4.5 kg masses connected by a road of negligible mass which is 30 cm long. How much work, in joules, is required to take the dumbbell from rest to an angular speed of 0.5 rad/s? Treat the masses as particles; rotation is about the center of mass.
) A dumbbell-shaped object is composed by two equal masses, m, connected by a rod of...
) A dumbbell-shaped object is composed by two equal masses, m, connected by a rod of negligible mass and length r. If I1 is the moment of inertia of this object with respect to an axis passing through the center of the rod and perpendicular to it and I2 is the moment of inertia with respect to an axis passing through one of the masses and perpendicular to the rod, it follows that a. It depends on the values of...
A cylindrical rod of length 2.0 m, radius 0.5 m, and mass 1.5 kg has two...
A cylindrical rod of length 2.0 m, radius 0.5 m, and mass 1.5 kg has two spheres attached on its ends. The centers of the spheres are 1.0 m from the center of the rod. The mass of each sphere is 0.66 kg. The rod is capable of rotating about an axis passing through its center and perpendicular to the plane of the page, but the set up is stationary to begin with. A small mass of value 0.19 kgmoving...
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg...
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg and m2 = 2.8kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 3.5 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) angularmomentum a) Calculate the total moment of inertia of the system I...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg and m2 = 5.0kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 12.9 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) a) Calculate the total moment of inertia of the system I =...
A 1.50-kg rod 1.00m long has a 2.00-kg mass attached to one end and a 4.00-kg...
A 1.50-kg rod 1.00m long has a 2.00-kg mass attached to one end and a 4.00-kg mass attached to the other. The system rotates at a constant angular speed about a fixed axis perpendicular to the rod that passes through the rod 40.0 cm from the end with the 4.00-kg mass attached. The angular speed of the system is 150 rad/s. a) What is the total moment of inertia of this system (including the rod and two masses) about the...
A 1-kg mass and a 4-kg mass are connected by a (massless) rod that is 2...
A 1-kg mass and a 4-kg mass are connected by a (massless) rod that is 2 meters long. Where is the center of mass of the system? Group of answer choices At the location of the 1-kg mass Between the two masses, but closer to the 4-kg mass At the location of the 4-kg mass Exactly at the center of the rod Between the two masses, but closer to the 1-kg mass
Two blocks with masses m1 = 1.10 kg and m2 = 3.50 kg are connected by...
Two blocks with masses m1 = 1.10 kg and m2 = 3.50 kg are connected by a massless string. They are released from rest. The coefficent of kinetic friction between the upper block and the surface is 0.440. Assume that the pulley has a negligible mass and is frictionless, and calculate the speed of the blocks after they have moved a distance 68.0 cm.
(a) A light, rigid rod of length ℓ = 1.00 m joins two particles, with masses...
(a) A light, rigid rod of length ℓ = 1.00 m joins two particles, with masses m1 = 4.00 kg and m2 = 3.00 kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod (see figure below). Determine the angular momentum of the system about the origin when the speed of each particle is 4.80 m/s. (Enter the magnitude to at least two decimal places in kg · m2/s.) Two masses...
Two point particles, A and B, with masses 4 kg and 6 kg, respectively, are connected...
Two point particles, A and B, with masses 4 kg and 6 kg, respectively, are connected by a rigid massless rod with a length of 0.6 m. The entire system is able to freely rotate, but is initially at rest. The following net torque acts on the system: T(net) (t)= (2 Nm/s)t What is the work (in J) done by this torque for during the first 2 s it acts on the particles?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT