Question

A girl and a boy push a merry go round that is initially at rest. The...

A girl and a boy push a merry go round that is initially at rest. The boy applies 20 N force from 1.0 meter away from the center tangentially and the girl applies T2=40 N from 0.9 m away from the center tangentially both rotating counterclockwise. Merry go round is a solid disc of radius 1.0 m and with mass m=80kg. a) Calculate the moment of inertia of the merry go round b) Calculate the net torque c) Calculate its angular acceleration

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A merry-go-round (radius = 4 m) with a perfect frictionless bearing is pushed with a force...
A merry-go-round (radius = 4 m) with a perfect frictionless bearing is pushed with a force of 24 N by a young girl. She pushes with a constant force that is oriented tangentially to the edge of the merry-go-round. After she pushes the merry-go-round through 14 full rotations (at which point she lets go) it is spinning with an angular speed of 3 rad/s. a) What is the moment of inertia of the merry-go-round? b) After the girl lets go,...
A 220 kg merry-go-round that is 2.1 meters in radius is rotating with a 24 kg...
A 220 kg merry-go-round that is 2.1 meters in radius is rotating with a 24 kg girl standing 1 meter from the center. It is rotating with a period of 3.2 seconds. 1. What is the angular velocity of the merry-go-round? 2. What is the total moment of inertia of the merry-go-round and girl? 3. What is the total angular momentum of the merry-go-round and girl? A 220 kg merry-go-round that is 2.1 meters in radius is rotating with a...
Torques and Angular Momentum 1. A 250 kg playground merry-go-round has a radius of 2.0m and...
Torques and Angular Momentum 1. A 250 kg playground merry-go-round has a radius of 2.0m and can be approximated as a disk. A.Find the moment of inertia of the merry-go-round. B.A 30.0 kg child applies 20 N tangential force for 10 seconds and then jumps on the edge while moving at the same speed as the merry-go-round. Find the angular speed of the merry-go-round and the child. C.How much work did the child do on the merry-go-round? D.How much average...
(8%) Problem 17:   A merry-go-round is a playground ride that consists of a large disk mounted...
(8%) Problem 17:   A merry-go-round is a playground ride that consists of a large disk mounted to that it can freely rotate in a horizontal plane. The merry-go-round shown is initially at rest, has a radius R = 1.5 meters, and a mass M = 261 kg. A small boy of mass m = 43 kg runs tangentially to the merry-go-round at a speed of v = 1.5 m/s, and jumps on. Randomized VariablesR = 1.5 meters M = 261...
On a playground, a merry-go-round with a total mass of 100 kg and a radius of...
On a playground, a merry-go-round with a total mass of 100 kg and a radius of 2.5mis rotating counterclockwise around its center with an angular speed of 0.5 rad/s. A girl with a mass of 40 kgruns at a speed of 4 m/s towards the edge of the merry-go-round and jumps on, as shown. What is the angularvelocity (magnitude and direction) of the merry-go-round after the girl lands on it? Assume the merry-go-roundis a uniform disk and treat the girl...
Consider a father pushing a child on a playground merry-go-round. The system has a moment of...
Consider a father pushing a child on a playground merry-go-round. The system has a moment of inertia of 84.4 kg · m2. The father exerts a force on the merry-go-round perpendicular to its 1.50 m radius to achieve a torque of 375 N · m. (a) Calculate the rotational kinetic energy (in J) in the merry-go-round plus child when they have an angular velocity of 23.2 rpm. (b) Using energy considerations, find the number of revolutions the father will have...
A 4.2 m diameter merry go round is rotating freely with an angular velocity of 1.0...
A 4.2 m diameter merry go round is rotating freely with an angular velocity of 1.0 rad/s. If its total moment of inertia is 1760 kg*m2, find the angular velocity of the merry go round when four people of 60 kg jump onto the edge of the merry go round. Treat the persons as point particles.
A playground merry-go-round has radius 2.40m and moment of inertia 2100kg?m2 about a vertical axle through...
A playground merry-go-round has radius 2.40m and moment of inertia 2100kg?m2 about a vertical axle through its center, and it turns with negligible friction. A child applies an 22.5N force tangentially to the edge of the merry-go-round for 19.0s . If the merry-go-round is initially at rest, what is its angular speed after this 19.0s interval? How much work did the child do on the merry-go-round? What is the average power supplied by the child?
A playground merry-go-round has a moment of inertia of 600 kg m2. When the merry-go-round is...
A playground merry-go-round has a moment of inertia of 600 kg m2. When the merry-go-round is at rest, a 20 kg boy runs at 5.9 m/s along a line tangential to the rim and jumps on, landing on the rim a distance of 3.0 m from the rotation axis of the merry-go-round. The angular velocity of the merry-go-round is then: A.1.2 rad/s B.0.38 rad/s C.0.45 rad/s D.0.56 rad/s E.0.72 rad/s
A 24.5-kg child is standing on the outer edge of a horizontal merry-go-round that has a...
A 24.5-kg child is standing on the outer edge of a horizontal merry-go-round that has a moment of inertia of about a vertical axis through its center and a radius of 2.40 m. The entire system (including the child) is initially rotating at 0.180 rev/s. Find the angular velocity if the child moves to a new position 1.10 m from the center of the merry-go-round... Please explain!!