Question

In the hydrogen atom the radius of orbit B is nine times greater than the radius...

In the hydrogen atom the radius of orbit B is nine times greater than the radius of orbit A. The total energy of the electron in orbit A is -3.40 eV. What is the total energy of the electron in orbit B?

Homework Answers

Answer #1

In the hydrogen atom , radius = 0.529 * n2

As, the radius of orbit B is nine times greater than the radius of orbit A.

=> nB = 3 * nA

As, energy of electron = - 13.6 eV/n2

=> the total energy of the electron in orbit B = - 3.40 eV/9

                                                                       = - 0.377 eV

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A hydrogen atom is in its first excited state (n = 2). Using Bohr's atomic model,...
A hydrogen atom is in its first excited state (n = 2). Using Bohr's atomic model, calculate the following. (a) the radius of the electron's orbit (in nm) nm (b) the potential energy (in eV) of the electron eV (c) the total energy (in eV) of the electron eV
The hydrogen atom consists of one electron orbiting one proton in a circular orbit. (a) Using...
The hydrogen atom consists of one electron orbiting one proton in a circular orbit. (a) Using Coulomb's Law and concepts of centripetal acceleration/force, show that the radius r of the orbit is given by where K is the kinetic energy of the electron, k is the Coulomb's Law constant, +e is the charge of the proton, and -e is the charge of the electron. (b) Calculate r when the kinetic energy of the electron is 13.6 eV. (c) What percentage...
A Hydrogen atom has one proton in the nucleus and one electron in the shell. In...
A Hydrogen atom has one proton in the nucleus and one electron in the shell. In a classic model of the atom, in a certain state, this electron is in a circular orbit around the nucleus with an velocity of 1090729.85781991 m/s. What is the radius of the orbit? What is the angular momentum, L, of the electron at this radius? What is the quantum value, n, of the electron at this radius? What is the total energy of the...
Consider a hydrogen atom: a single electron that orbit the proton, the electron circular orbit has...
Consider a hydrogen atom: a single electron that orbit the proton, the electron circular orbit has radius Bohr ground state .529 angstrom. a. Calculate the magnitude of the Coulomb's force between the proton and electron b. Write this force in vector form. c. Calculate the velocity and acceleration of the electron. d. Calculate the electron's electric potential energy in electron volt.
An excited hydrogen atom could, in principle, have a radius of 1.50 mm . A -...
An excited hydrogen atom could, in principle, have a radius of 1.50 mm . A - What would be the value of n for a Bohr orbit of this size? n= ? B - What would its energy be? e = ? eV
2. A hydrogen atom consists of a fixed nucleus with charge q = 1.6x10^-19 coulombs and...
2. A hydrogen atom consists of a fixed nucleus with charge q = 1.6x10^-19 coulombs and mass M = 1.67x10^-27kg , around which a charge electron moves e=1.6x10^-19 coulombs and mass m = 9.1x10^-31 kg in a circular orbit of classical radius ao = 5.11x10^-11 m. (a) Find the orbital velocity v of the electron and compare it with the velocity of light. (b) Determine the total energy of the electron in this orbit in units of electron volts (eV),...
If the radius of atom X is greater than the radius of atom Y (given that...
If the radius of atom X is greater than the radius of atom Y (given that X and Y are in the same period) using general periodic trends, it is likely that: A)X are a larger electron affinity that Y does B) X has a larger effective nuclear charge than Y does. C) X has a greater metallic character than Y does D) X has a larger first ionization energy than Y does E) X has a poorer conductor of...
Light is emitted from a hydrogen atom as an electron in the atom jump from the...
Light is emitted from a hydrogen atom as an electron in the atom jump from the n=9 orbit to the n=3 orbit. What is the energy of the emitted photon in eV? (b) What are the frequency and wavelength of the photon? (c) In which frequency range (UV, visible, IR) is the emitted electromagnetic radiation? Justify your answer.
A Hydrogen atom has one proton in the nucleus and one electron in the shell. In...
A Hydrogen atom has one proton in the nucleus and one electron in the shell. In a classic model of the atom, in a certain state, this electron is in a circular orbit around the nucleus with an angular momentum of 9.495e-34 Js. What is the radius of the orbit? 4.30×10-9m    What is the speed of the electron at this radius? What is the kinetic energy of the electron at this radius? What is the kinetic energy in electron-volts?
Suppose the electron in the hydrogen atom were bound to the proton by gravitational forces (rather...
Suppose the electron in the hydrogen atom were bound to the proton by gravitational forces (rather than electrostatic forces). (a) Find the radius of the first orbit. (b) Find the energy of the first orbit.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT