Question

Blood plasma flows with a rate of 0.3 cm3/s through a tube with a diameter d...

Blood plasma flows with a rate of 0.3 cm3/s through a tube with a diameter d = 0.24 cm and length l = 0.9 m at a temperature of 20°C. The pressure at the tube entrance is P2 = 1.80 x 104 N/m2. If the temperature of the tube and plasma reaches 27°C, what is the tube entrance pressure P2’ needed to maintain flow rate and pressure at the tube exit constant. Consider η20°C = 1.81 mPa ·s and η27°C = 1.31 mPa ·s.

Select one:

a. P2’ = 1.79 x 104 N/m3

b. P2’ = 1.78 x 104 N/m3

c. P2’ = 1.74 x 104 N/m3

d. P2’ = 1.62 x 104 N/m3

Homework Answers

Answer #1

Please see image and try to understand thanks

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Blood plasma flows with a rate of 0.34 cm3/s through a tube with a diameter d...
Blood plasma flows with a rate of 0.34 cm3/s through a tube with a diameter d = 0.15 cm and length l = 2.0 m at a temperature of 20°C. The pressure at the tube entrance is P2 = 1.90 x 104 N/m2. If the temperature of the tube and plasma reaches 31°C, what is the tube entrance pressure P2’ needed to maintain the flow rate and pressure at the tube exit constant. Consider η20°C = 1.81 mPa ·s and...
Fluid originally flows through a tube at a rate of 120 cm3/s. To illustrate the sensitivity...
Fluid originally flows through a tube at a rate of 120 cm3/s. To illustrate the sensitivity of flow rate to various factors, calculate the new flow rate (in cm3/s) for the following changes with all other factors remaining the same as in the original conditions. (a) Pressure difference increases by a factor of 1.40. _________ cm3/s (b) A new fluid with 3.00 times greater viscosity is substituted. __________ cm3/s (c) The tube is replaced by one having 4.00 times the...
(a) Fluid at a mass flow rate of 0.352 kg/s flows through a tube with a...
(a) Fluid at a mass flow rate of 0.352 kg/s flows through a tube with a diameter of 15 mm and a length of 25 m. The inner surface of the tube is heated with a uniform heat flux of 1000 W/m2. Measurements shown that the inlet temperature of the fluid is 30 ˚C. Assume the outer surface of the tube is perfectly insulated. Consider the thermophysical properties of the fluid are as follows: density ρ = 1000 kg/m3, specific...
Kerosene enters a 5 cm diameter tube at 35C with a velocity of 3 m/s. The...
Kerosene enters a 5 cm diameter tube at 35C with a velocity of 3 m/s. The tube is wrapped with a resistance heating element so that when it is energized a uniform heat flux is imposed on the tube. At the exit of the tube, the temperature of the kerosene is to be 45C. A constraint is placed on the process, such that the local kerosene temperature cannot exceed 80C; this is likely to occur at the wall of the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT