Question

Blood plasma flows with a rate of 0.3 cm3/s through a tube with a diameter d...

Blood plasma flows with a rate of 0.3 cm3/s through a tube with a diameter d = 0.24 cm and length l = 0.9 m at a temperature of 20°C. The pressure at the tube entrance is P2 = 1.80 x 104 N/m2. If the temperature of the tube and plasma reaches 27°C, what is the tube entrance pressure P2’ needed to maintain flow rate and pressure at the tube exit constant. Consider η20°C = 1.81 mPa ·s and η27°C = 1.31 mPa ·s.

Select one:

a. P2’ = 1.79 x 104 N/m3

b. P2’ = 1.78 x 104 N/m3

c. P2’ = 1.74 x 104 N/m3

d. P2’ = 1.62 x 104 N/m3

Homework Answers

Answer #1

Please see image and try to understand thanks

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Blood plasma flows with a rate of 0.34 cm3/s through a tube with a diameter d...
Blood plasma flows with a rate of 0.34 cm3/s through a tube with a diameter d = 0.15 cm and length l = 2.0 m at a temperature of 20°C. The pressure at the tube entrance is P2 = 1.90 x 104 N/m2. If the temperature of the tube and plasma reaches 31°C, what is the tube entrance pressure P2’ needed to maintain the flow rate and pressure at the tube exit constant. Consider η20°C = 1.81 mPa ·s and...
Fluid originally flows through a tube at a rate of 120 cm3/s. To illustrate the sensitivity...
Fluid originally flows through a tube at a rate of 120 cm3/s. To illustrate the sensitivity of flow rate to various factors, calculate the new flow rate (in cm3/s) for the following changes with all other factors remaining the same as in the original conditions. (a) Pressure difference increases by a factor of 1.40. _________ cm3/s (b) A new fluid with 3.00 times greater viscosity is substituted. __________ cm3/s (c) The tube is replaced by one having 4.00 times the...
Air under standard conditions (ñ=1.23 kg/m3, µ=1.79 x 10 -5) flows through a 4- mm diameter...
Air under standard conditions (ñ=1.23 kg/m3, µ=1.79 x 10 -5) flows through a 4- mm diameter drawn tubing with an average velocity of V = 50 m/s. For such conditions the flow would normally be turbulent. However if precautions are taken to eliminate disturbances to the flow (the entrance to the flow is very smooth, the air is dust free, the tube does not vibrate etc.), it may be possible to maintain laminar flow. What is the pressure drop in...
(a) Fluid at a mass flow rate of 0.352 kg/s flows through a tube with a...
(a) Fluid at a mass flow rate of 0.352 kg/s flows through a tube with a diameter of 15 mm and a length of 25 m. The inner surface of the tube is heated with a uniform heat flux of 1000 W/m2. Measurements shown that the inlet temperature of the fluid is 30 ˚C. Assume the outer surface of the tube is perfectly insulated. Consider the thermophysical properties of the fluid are as follows: density ρ = 1000 kg/m3, specific...
Kerosene enters a 5 cm diameter tube at 35C with a velocity of 3 m/s. The...
Kerosene enters a 5 cm diameter tube at 35C with a velocity of 3 m/s. The tube is wrapped with a resistance heating element so that when it is energized a uniform heat flux is imposed on the tube. At the exit of the tube, the temperature of the kerosene is to be 45C. A constraint is placed on the process, such that the local kerosene temperature cannot exceed 80C; this is likely to occur at the wall of the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT