Question

1. Monochromatic light is incident on a grating that is 81.0 mm wide and ruled with...

1. Monochromatic light is incident on a grating that is 81.0 mm wide and ruled with 21,000 lines. The second-order maximum is seen at 15.0°. What is the wavelength of the incident light in nm?

2. Light of wavelength 408.0 nm falls on a double-slit and the third order bright fringe is seen at an angle of 6.00°. What is the separation between the double slits in μm?

3. A light ray initially in water (n = 1.33) enters a transparent substance at an angle of incidence of 43.0°, and the transmitted ray is refracted at an angle of 25.5°. Find the refractive index of the substance.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Intense white light is incident on a diffraction grating that has 752 lines/mm. (a) What...
1. Intense white light is incident on a diffraction grating that has 752 lines/mm. (a) What is the highest order in which the complete visible spectrum can be seen with this grating? (Enter 1 for first order, 2 for second order, etc.) (b) What is the angular separation between the violet edge (400 nm) and the red edge (700 nm) of the first order spectrum produced by the grating? 2. The angle of incidence of a light beam in air...
With a diffraction grating that has 3800 slits/cm, a monochromatic light source produces 2nd order bright...
With a diffraction grating that has 3800 slits/cm, a monochromatic light source produces 2nd order bright fringe at an angle of 22 (a) What is the wavelength of the source? Express this in meters and nm. (b) Draw a diagram indicating the 1st and 2nd order bright fringes. Indicate all the parameters. (c) If the screen is 0.3-m away, how far (in cm) is 2nd order bright fringe from the center? please explain
(A)A beam of monochromatic light is incident on a single slit of width 0.650 mm. A...
(A)A beam of monochromatic light is incident on a single slit of width 0.650 mm. A diffraction pattern forms on a wall 1.35 m beyond the slit. The distance between the positions of zero intensity on both sides of the central maximum is 2.32 mm. Calculate the wavelength of the light in nm. (B)A grating with 251 grooves/mm is used with an incandescent light source. Assume the visible spectrum to range in wavelength from 400 nm to 700 nm. In...
A. A diffraction grating has 2400 lines per centimeter. At what angle in degrees will the...
A. A diffraction grating has 2400 lines per centimeter. At what angle in degrees will the first-order maximum be for 522 nm wavelength light? B. What is the wavelength of light (in nanometers) falling on double slits separated by 2.34 μm if the third-order maximum is at an angle of 62.5º? C. At what angle, in degrees, is the second minimum for 555 nm light falling on a single slit of width 2.35 μm ? D. Find the distance between...
Monochromatic light of wavelength 588 nm is incident upon a diffraction grating that contains 8500 lines...
Monochromatic light of wavelength 588 nm is incident upon a diffraction grating that contains 8500 lines spread out over a distance of 1.5 cm. a) What is the line spacing of the grating? b) At what angle does the 2nd principle maximum occur? c) If the screen is located a distance of 1.55 m from the grating, what is the linear distance on the screen that separates the central maximum with the 2nd order principle maximum?
Monochromatic light at 577 nm illuminates a diffraction grating with 325 lines/mm. Determine (a) the angle...
Monochromatic light at 577 nm illuminates a diffraction grating with 325 lines/mm. Determine (a) the angle to the first - order maximum, (b) the highest order that can be observed with this grating at the given wavelength, and (c) the angle to this highest - order maximum
With a monochromatic light of wavelength ?? = 532 nm A double-slit interference pattern is produced...
With a monochromatic light of wavelength ?? = 532 nm A double-slit interference pattern is produced on a screen as shown in the picture. The slit separation ?? is 0.10 mm, and the slit–screen separation ?? is 50 cm. Assume that the angle θ (from the slit center to the maxima and minima) small enough to permit use of the approximations sin θ ≈ tan θ ≈ θ, in which θ is expressed in radian measure. a. A strip of...
1) For a certain diffraction grating experiment using 500-nm light, the third dark fringe above the...
1) For a certain diffraction grating experiment using 500-nm light, the third dark fringe above the center line occurs at an angle of 30° above the center line. The screen is 6.00m from the slits. Why is this angle larger than the angle for the double-slit experiment above using the same wavelength of light? [Ignore any effects of single-slit diffraction.] Group of answer choices these diffraction grating slits are more closely-spaced these diffraction grating slits are spaced farther apart from...
A diffraction grating is made up of slits of width a with separation d. The grating...
A diffraction grating is made up of slits of width a with separation d. The grating is illuminated by monochromatic plane waves of wavelength ? at normal incidence. What is the angular width of a spectral line observed in the first order if the grating has N slits? State your answer in terms of the given variables. ??w =? Monochromatic light with wavelength 515 nm is incident on a slit with width 0.0213 mm. The distance from the slit to...
White light is incident upon a diffraction grating with 1200 lines per mm. What is the...
White light is incident upon a diffraction grating with 1200 lines per mm. What is the angle between the red light (700 nm) and green light (550 nm) leaving the grating in the first order bright fringe? a. 32.8 degrees b. 24.5 degrees c. 57.2 degrees d. 15.9 degrees