Question

A circular ring of charge, with radius R,is placed in the xy-plane and centered on the...

A circular ring of charge, with radius R,is placed in the xy-plane and centered on the origin. The linear charge density of the ring isλ=λ_o*cos^2(φ), where φ is the cylindrical polar coordinate such that any point in space is indicated by (r, φ, z). Find the electric potential anywhere on the z-axis as a function of z . Using this electric potential find the electric field anywhere on the z-axis also as a function of z

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2. A circular ring with a radius R of 1 cm carries a charge density of...
2. A circular ring with a radius R of 1 cm carries a charge density of ?L = R sin ? (? is an azimuthal angle) µC/cm. The ring is then placed on the xy plane with its axis the same as the z-axis. Find the electric field intensity E and the electric potential V on point A on z-axis 2 cm from the xy plane.
A thin ring of radius R in the x − y plane is centered at the...
A thin ring of radius R in the x − y plane is centered at the coordinate origin, and is charged with linear charge density λ which depends on the polar angle θ as λ(θ) = λ0 sin(θ), where λ0 > 0. (a) Sketch λ(θ) for θ ∈ [0, 2π]. (b) Before doing any calculations, sketch the E~ x and E~ y vector components of the electric field at the coordinate origin, as well as where (roughly) you expect the...
10. A circular cylinder with a radius R of 1 cm and a height H of...
10. A circular cylinder with a radius R of 1 cm and a height H of 2 cm carries a charge density of ρV = H r2 sin φ µC/cm3 (r is a point on the z-axis, φ is an azimuthal angle). The cylinder is then placed on the xy plane with its axis the same as the z-axis. Find the electric field intensity E and the electric potential V on point A on z-axis 2 cm from the top...
A ring of charge with radius R = 1.5 m is centered on the origin in...
A ring of charge with radius R = 1.5 m is centered on the origin in the x-y plane. A positive point charge is located at the following coordinates: x = -10.1 m y = 16.8 m z = 17.1 m The point charge and the total charge on the ring are the same, Q = +22 C. Find the net electric field along the z-axis at z = 1.6 m. Enet x=? Enet y=? Enet z=? Thanks!!
An infinite, non-conducting slab of thickness 2w is centered on the xy-plane and bears a uniform...
An infinite, non-conducting slab of thickness 2w is centered on the xy-plane and bears a uniform volumetric charge density rho. Find the electric potential on the z-axis at 10w with respect to the origin in terms of epsilon.
A circular cylinder with a radius R of 1 cm and a height H of 2...
A circular cylinder with a radius R of 1 cm and a height H of 2 cm carries a charge density of pv = h R^2 uC/cm^3 (h is a point on the z-axis). The cylinder is then placed on the xy plane with its axis the same as the z-axis. Find the electric field intensity E and and the electric potential V on point A on z-axis 2 cm from the top of the cylinder.
A thin dielectric ring, radius R has a charge distribution (lambda) = acos^2(theta), where (theta) is...
A thin dielectric ring, radius R has a charge distribution (lambda) = acos^2(theta), where (theta) is the usual polar angle and "a" is a constant with units of charge/length. The ring lies centered in the x-y plane. Find the total charge Q on the ring and the potential at the center of the ring. Now suppose the ring has a uniform charge density such that the total charge is still Q. Find the potential at the center of the ring...
3) A thin ring made of uniformly charged insulating material has total charge Q and radius...
3) A thin ring made of uniformly charged insulating material has total charge Q and radius R. The ring is positioned along the x-y plane of a 3d coordinate system such that the center of the ring is at the origin of the coordinate system. (a) Determine an expression for the potential at an arbitrary location along the z-axis in terms of Q, R, and z. (b) Use this expression to determine an expression for the magnitude of the electric...
A grounded conducting sphere of radius R is centered at the origin and is in a...
A grounded conducting sphere of radius R is centered at the origin and is in a uniform electric field E = E0 z. Find an expression for the potential outside the sphere, i.e. for r > R. Find an expression for the induced charge density on the surface of the sphere . If the sphere is now disconnected from ground and there is an additional charge Q placed on the sphere, what is the new expression for the potential?
Total charge q2 is uniformly placed on a ring of radius R. The magnitude of the...
Total charge q2 is uniformly placed on a ring of radius R. The magnitude of the electric field at position z on the axis of the ring is given by ((kq2z)/(R^2+z^2)^(3/2)) A uniformly charged rod of total charge q1 and length L is now placed on the z axis. The nearest end of the rod is at distance L from the center of the ring, i.e. the rod extends from z = L to z = 2L (see figure on...