Question

Light with wavelegth 400 nanometers strikes a metal surface such that electrons are ejected with a...

Light with wavelegth 400 nanometers strikes a metal surface such that electrons are ejected with a maximum kinetic energy 2.13 x 10-19 Joules. Calculate the work function of this metal in electron volts.

2.0 eV

1.7 eV

not enough information

2.8 eV

3.3 eV

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Light of wavelength 342 nm shines on a metal surface and the stopping potential V0 in...
Light of wavelength 342 nm shines on a metal surface and the stopping potential V0 in a photoelectric experiment is observed to be 0.850 V. a) What is the work function φ of the metal? (eV) b) What is the maximum kinetic energy of the ejected electrons (in Joules)? c) What is the longest wavelength light that will still allow electrons to escape the metal?(nm)
Problem: Light strikes a sodium surface, causing photoelectric emission. The stopping potential for the ejected electrons...
Problem: Light strikes a sodium surface, causing photoelectric emission. The stopping potential for the ejected electrons is 5.0V, and the work function of sodium is 2.2eV. What is the wavelength of the incident light? Give your answer in nanometers.​
When light of frequency f is shined on a given metal, electrons of maximum kinetic energy...
When light of frequency f is shined on a given metal, electrons of maximum kinetic energy of 3.25 eV are ejected from the metal. When light of frequency 4f is shined on the same metal, electrons of maximum energy 15.65 eV are ejected from the metal. Question: What is the work function of the metal?
1)A magnesium surface has a work function of 2.65 eV. Electromagnetic waves with a wavelength of...
1)A magnesium surface has a work function of 2.65 eV. Electromagnetic waves with a wavelength of 280 nm strike the surface and eject electrons. Find the maximum kinetic energy of the ejected electrons. Express your answer in electron volts. Ans in  eV 2)What is the energy of each of the two photons produced in an electron-positron annihilation? Use the following Joules-to-electron-Volts conversion 1eV = 1.602 × 10-19 J. The rest mass of an electron is 9.11×10^-31 kg. Ans in MeV
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the...
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV . What is the maximum kinetic energy K_0 of the photoelectrons when light of wavelength 340 nm falls on the same surface? Use h = 6.63×10−34 J⋅s for Planck's constant and c = 3.00×108 m/s for the speed of light and express your answer in electron volts. View Available Hint(s) K_0 =    eV
When ultraviolet light with a wavelength of 400 nmfalls on a certain metal surface, the maximum...
When ultraviolet light with a wavelength of 400 nmfalls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV . What is the maximum kinetic energy K0 of the photoelectrons when light of wavelength 350 nm falls on the same surface? Use h = 6.63×10?34 J?s for Planck's constant and c = 3.00×108 m/s for the speed of light and express your answer in electron volts.
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the...
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV . What is the maximum kinetic energy K0 of the photoelectrons when light of wavelength 330 nm falls on the same surface? Use h = 6.63×10?34J?s for Planck's constant and c = 3.00×108m/s for the speed of light and express your answer in electron volts.
2a) When a metal surface is illuminated by light of wavelength 310 nm, the measured maximum...
2a) When a metal surface is illuminated by light of wavelength 310 nm, the measured maximum kinetic energy of the emitted electrons is 0.50 eV. Calculate the metal plate’s work function φ in units of eV. b) In the rest frame of an ejected electron from the photoelectric experiment in part a), an incident γ-ray with an energy of 0.25 MeV interacts with the electron. Following the collision, the γ-ray has a final energy of 0.1 MeV. Calculate the angle...
A metal surface has a work function of 3.18 eV. Determine whether photoelectrons are ejected or...
A metal surface has a work function of 3.18 eV. Determine whether photoelectrons are ejected or not and if so, calculate their maximum kinetic energy, when the surface is illuminated by light of wavelength of (a) 310 nm and (b) 460 nm.
A metal alloy has a work function of E0 = 4.2 × 10?19 J. It is...
A metal alloy has a work function of E0 = 4.2 × 10?19 J. It is irradiated with light of different wavelengths, and the maximum kinetic energy of ejected electrons is measured. Part A: What is the maximum kinetic energy of ejected electron when 390-nm light is used? Part B:vWhat is the maximum electron speed when 390-nm light is used? Part C: Does 750-nm light have enough energy to eject an electron from the metal?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT