Question

Consider a 10 kg block attached to a spring whose spring constant is k 1000 N/m,...

Consider a 10 kg block attached to a spring whose spring constant is k 1000 N/m, originally in equilibrium. The block is then given an initial speed of 4 m/s. The maximum deviation (in meters) from equilibrium achieved by the oscillating block is closest to

Homework Answers

Answer #1

Mass of the block = m = 10 kg

Force constant of the spring = k = 1000 N/m

Speed given to the block at the equilibrium position = V = 4 m/s

Maximum deviation of the block from the equilibrium = d

By conservation of energy the kinetic energy of the block is converted into the potential energy of the spring at maximum deviation.

d = 0.4 m

Maximum deviation of the oscillating block from the equilibrium = 0.4 m

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a block attached to one end of an ideal spring with spring constant k=10 N/m....
Consider a block attached to one end of an ideal spring with spring constant k=10 N/m. The other end of the spring is fixed to the ceiling. The block is moving vertically with simple harmonic oscillations. During the oscillations, the speed of the block reaches a maximum value of 10 m/s and the maximum acceleration of the block is 50 m/s2. What is the mass of the block? Express your answer in units of kg, but enter only the numeric...
A block of mass m = 4.5 kg is attached to a spring with spring constant...
A block of mass m = 4.5 kg is attached to a spring with spring constant k = 610 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 29° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.13. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...
A 2.00×10−2-kg bullet strikes a 0.280-kg block attached to a fixed horizontal spring whose spring constant...
A 2.00×10−2-kg bullet strikes a 0.280-kg block attached to a fixed horizontal spring whose spring constant is 3000 N/m and sets it into oscillation with an amplitude of 17.0 cm . What was the initial speed of the bullet if the two objects move together after impact?
A block-spring system consists of a spring with constant k = 445 N/m attached to a...
A block-spring system consists of a spring with constant k = 445 N/m attached to a 2.25 kg block on a frictionless surface. The block is pulled 4.10 cm from equilibrium and released from rest. For the resulting oscillation, find the amplitude, angular frequency, frequency, and period. What is the maximum value of the block's velocity and acceleration?
A block of mass m = 2.00 kg is attached to a spring of force constant...
A block of mass m = 2.00 kg is attached to a spring of force constant k = 600 N/m as shown in the figure below. The block is pulled to a position xi = 5.35 cm to the right of equilibrium and released from rest. (a) Find the speed the block has as it passes through equilibrium if the horizontal surface is frictionless. m/s (b) Find the speed the block has as it passes through equilibrium (for the first...
8. A 0.40-kg mass is attached to a spring with a force constant of k =...
8. A 0.40-kg mass is attached to a spring with a force constant of k = 387 N/m, and the mass–spring system is set into oscillation with an amplitude of A = 3.7 cm. Determine the following. (a) mechanical energy of the system J (b) maximum speed of the oscillating mass m/s (c) magnitude of the maximum acceleration of the oscillating mass m/s2
1. A 0.45 kg object mass attached to a spring whose spring constant is 600 n/m...
1. A 0.45 kg object mass attached to a spring whose spring constant is 600 n/m executes simple harmonic motion. its maximum speed is 3.0 m/s the maximum acceleration is:
A 0.9 kg block attached to a spring of force constant 13.1 N/m oscillates with an...
A 0.9 kg block attached to a spring of force constant 13.1 N/m oscillates with an amplitude of 3 cm. A) Find the maximum speed of the block. Answer in units m/s. B) Find the speed of the block when it is 1.5 cm from the equilibrium position. Answer in units of m/s. C) Find its acceleration at 1.5 cm from the equilibrium position. Answer in units of m/s2. D) Find the time it takes for the block to move...
A block with mass 0.382 kg is attached to a horizontal spring with spring constant k...
A block with mass 0.382 kg is attached to a horizontal spring with spring constant k = 1.28 N/m on a frictionless surface. The block is pulled 0.753 m from equilibrium and released. (a) What is the amplitude of the block's motion? (b) What is its period? (c) How long after release does the block take to first return to its equilibrium position? (d) What is its speed at that position? {b. 3.43 s, d. 1.38 m/s} a) A=0.753m b)...
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...