Question

If the pressure applied to a set amount of an ideal gas is held constant and...

If the pressure applied to a set amount of an ideal gas is held constant and the temperature is increased, the volume will

Homework Answers

Answer #1

We will look at this from the perspectiev of the Ideal Gas Law.

Here, is the gas constant. As per the conditions given, the amount() is constant, as well as the pressure().

We on our part are examining the relation between the an increasing temperature and the volume.

So we rearrange the equation to present the volume as a function of the temperature.

We can see that since everything except the temperature on the right are constant, increasing the temperature will cause the volume to increase.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
With the pressure held constant at 250 kPa , 47 mol of a monatomic ideal gas...
With the pressure held constant at 250 kPa , 47 mol of a monatomic ideal gas expands from an initial volume of 0.70 m3 to a final volume of 1.9 m3 . a) How much work was done by the gas during the expansion? b) What were the initial temperature of the gas? c) What were the final temperature of the gas? d) What was the change in the internal energy of the gas? e) How much heat was added...
One mole of an ideal gas is held at a constant volume of 7.5 liter. Find...
One mole of an ideal gas is held at a constant volume of 7.5 liter. Find the change in pressure (Pf-Pi), in atm if the temperature increases by 16.3 degrees Celsius.
Answer the following questions on pressure (will the presser double, quadruple, halve, etc?): a) An ideal...
Answer the following questions on pressure (will the presser double, quadruple, halve, etc?): a) An ideal gas is compressed to half of its initial volume while temperature is constant. What will happen to the pressure? b) An ideal gas is expanded to double its initial volume while temperature is constant. What will happen to the pressure? c) The temperature of an ideal gas is doubled while its volume is held constant. What will happen to the pressure? d) The temperature...
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas...
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas expands isobarically. Compare the initial (i) and the final (f) physical quantities of the gas to each other. The internal energy Uf is ... Ui. The temperature Tf is ... Ti. The volume Vf is ... Vi. The entropy Sf is ... Si. The pressure pf is ... pi.
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas...
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas expands adiabatically. Compare the initial (i) and the final (f) physical quantities of the gas to each other. The pressure pf is ... pi. The temperature Tf is ... Ti. The internal energy Uf is ... Ui. The entropy Sf is ... Si. The volume Vf is ... Vi.
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas...
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas expands adiabatically. Compare the initial (i) and the final (f) physical quantities of the gas to each other. The pressure pf is ... pi. The temperature Tf is ... Ti. The internal energy Uf is ... Ui. The entropy Sf is ... Si. The volume Vf is ... Vi.
A monatomic ideal gas is held in a thermally insulated container with a volume of 0.1000...
A monatomic ideal gas is held in a thermally insulated container with a volume of 0.1000 m3m3. The pressure of the gas is 111 kPakPa, and its temperature is 305 KK. To what volume must the gas be compressed to increase its pressure to 140 kPakPa? At what volume will the gas have a temperature of 290 KK?
Three moles of an ideal monatomic gas expand at a constant pressure of 2.90atm : the...
Three moles of an ideal monatomic gas expand at a constant pressure of 2.90atm : the volume of the gas changes from 3.30*10^-2m^3 to 4.50*10^-2m^3. Part A, Calculate the initial temperature of the gas. Part B, Calculate the final temperature of the gas. Part C, Calculate the amount of work the gas does in expanding. Part D, Calculate the amount of heat added to the gas. Part E, Calculate the change in internal energy of the gas.
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas...
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas expands adiabatically. Compare the initial (i) and the final (f) physical quantities of the gas to each other. (Option choices for fill in the blank are equal to, less than, or greater than) The temperature Tf is ... Ti. The volume Vf is ... Vi. The pressure pf is ... pi. The internal energy Uf is ... Ui. The entropy Sf is ... Si.
An ideal gas is held in a container of volume V at pressure p. The rms...
An ideal gas is held in a container of volume V at pressure p. The rms speed of a gas molecule under these conditions is v. If now the volume is changed to 4V , the rms speed of a molecule will be