Question

In the simple dampened harmonic movement the condition of over damping is given by:

In the simple dampened harmonic movement the condition of over damping is given by:

Homework Answers

Answer #1

over damping condition:  

where r/m = 2b and /m =

r is the frictional force per unit velocity, is the force constant and m is the mass.

The body once displacement returns to its equilibrium position quit slowly without performing any oscillation. This type of motion is called as over damped or dead beat.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. For a simple harmonic movement, is it possible that the position, speed and acceleration are...
1. For a simple harmonic movement, is it possible that the position, speed and acceleration are at some point in the same direction, or at least two of them are? Explain. 2.If a pendulum is in an elevator, what happens to its period if the elevator a) accelerates upwards, b) moves with constant speed upwards, c) accelerates downwards, d) accelerates downwards with the acceleration of gravity (9.8m/s2)?
consider a simple pendulum in simple harmonic motion () is placed on the moon, where the...
consider a simple pendulum in simple harmonic motion () is placed on the moon, where the gravitional acceleration is 1.63 m/sec2, the increased period is T = 4.59 sec Determine: a. suppose that the pendulum has friction where the amplitude became 0.100 of the original amplitude after 0.001 hour. calculate the damping factor. b. calculate the period of the pendulum with friction.  
The position of an object in simple harmonic motion as a function of time is given...
The position of an object in simple harmonic motion as a function of time is given by ? = 3.8??? (5??/4 + ?/6) where t is in seconds and x in meters. In t = 2.0s calculate (a) the period, (b) the oscillation frequency (c) velocity and (d) acceleration.   
The velocity of a simple harmonic oscillator is given by v = -8.02sin(21.11t) (mks units) If...
The velocity of a simple harmonic oscillator is given by v = -8.02sin(21.11t) (mks units) If the spring constant is 48 N/m, what is the spring's total mechanical energy?
A block of mass 21.50 g on the end of spring undergoes simple harmonic motion with...
A block of mass 21.50 g on the end of spring undergoes simple harmonic motion with a frequency of 6.00 Hz. 1. What is the spring constant of the spring? 2. If the motion of the mass has an initial amplitude of 7.00 cm what is its maximum speed?. 3. The amplitude decreases to 1.417 cm in 0.83 s, what is the damping constant for the system?
The position of an object in simple harmonic motion is given by x= (6.88 cm) cos...
The position of an object in simple harmonic motion is given by x= (6.88 cm) cos [(2 pie/0.663 s)t]     (a) What is the object's speed at 0.828 s? cm/s (b) What is the object's maximum speed? cm/s (c) What is the object's speed when -6.88 cm? cm/s
Q1: Select all true statements. The KE of a simple harmonic oscillator is maximum at the...
Q1: Select all true statements. The KE of a simple harmonic oscillator is maximum at the maximum absolute displacements. The frequency of a simple harmonic oscillator is independent of its amplitude. A harmonic oscillator, the motion of which is reduced and brought to rest over time by friction, is an example of a damped harmonic oscillator. The period of an object moving in simple harmonic motion is the number of cycles that occur per second. Young’s Modulus depends on the...
For an object with simple harmonic motion; a) What can you say about its speed, acceleration...
For an object with simple harmonic motion; a) What can you say about its speed, acceleration and kinetic energy at equilibrium? b) For simple harmonic motion given by x = 3,8 cos (5πt / 4 + π / 6), what is its amplitude, frequency, position and speed for t = 0?
he equation of motion of a simple harmonic oscillator is given by x(t) = (7.4 cm)cos(12πt)...
he equation of motion of a simple harmonic oscillator is given by x(t) = (7.4 cm)cos(12πt) − (4.2 cm)sin(12πt), where t is in seconds.Find the amplitude. m (b) Determine the period. s (c) Determine the initial phase. °
In Classical Physics, the typical simple harmonic oscillator is a mass attached to a spring. The...
In Classical Physics, the typical simple harmonic oscillator is a mass attached to a spring. The natural frequency of vibration (radians per second) for a simple harmonic oscillator is given by ω=√k/m and it can vibrate with ANY possible energy whatsoever. Consider a mass of 135 grams attached to a spring with a spring constant of k = 1 N/m. What is the Natural Frequency (in rad/s) of vibration for this oscillator? In Quantum Mechanics, the energy levels of a...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT