Question

Suppose that the uncertainty in position of an electron is equal to the radius of the...

Suppose that the uncertainty in position of an electron is equal to the radius of the n=1 Bohr orbit, about 5.00�10?11m .

A. Calculate the minimum uncertainty in the corresponding momentum component.

B. Compare this with the magnitude of the momentum of the electron in the n=1 Bohr orbit.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The uncertainty in position of an electron is 5.00 10-10 m. Find the minimum uncertainty in...
The uncertainty in position of an electron is 5.00 10-10 m. Find the minimum uncertainty in the electron's velocity. Incorrect:
(a) Assume an electron in the ground state of the hydrogen atom moves at an average...
(a) Assume an electron in the ground state of the hydrogen atom moves at an average speed of 5.00 × 10^6 m/s. If the speed is known to an uncertainty of 1 percent, what is the minimum uncertainty in its position? The radius of the hydrogen atom in the ground state is 5.29 × 10^−11 m. The mass of an electron is 9.1094 × 10^−31 kg. __________× 10______ m (b) A 0.13−kg baseball thrown at 100 mph has a momentum...
The positiron is a bound electron position pair. The positron isthe antiparticle of the electron...
The positiron is a bound electron position pair. The positron is the antiparticle of the electron with the charge +e and the same rest mass as the electron. derive and calculate the following quantities considering that e+ and e- are orbiting around the mutual center of mass1.) radius of the bohr orbit with n=12.) binding energy of the system3.) energy and wavelength of a photon emitted if the eletron transistions from n=2 to the ground state
An object is moving along a straight line, and the uncertainty in its position is 3.00m....
An object is moving along a straight line, and the uncertainty in its position is 3.00m. (a) find the minimum uncertainty in the momentum of the object. find the minimum uncertainty in the object's velocity, assuming that the object is (b) a golf ball (mass =0.0450 kg) and (c) an electron.
What is the energy of an electron in the sixth energy level of hydrogen?     E...
What is the energy of an electron in the sixth energy level of hydrogen?     E =     J According to the Bohr mode, this is all kinetic energy. Using the magnitude of this energy, calculate the velocity of the electron?     v =      m/s What is the radius of the orbit according to the Bohr model?     r =      m What is the deBroglie wavelength of the electron?     λ =     m What is the ratio...
An object is moving along a straight line, and the uncertainty in its position is 2.80...
An object is moving along a straight line, and the uncertainty in its position is 2.80 m. (a) Find the minimum uncertainty in the momentum of the object. Find the minimum uncertainty in the object's velocity, assuming that the object is (b) a golf ball (mass = 0.0450 kg) and (c) an electron.
An object is moving along a straight line, and the uncertainty in its position is 3.50...
An object is moving along a straight line, and the uncertainty in its position is 3.50 m. (a) Find the minimum uncertainty in the momentum of the object. Find the minimum uncertainty in the object's velocity, assuming that the object is (b) a golf ball (mass = 0.0450 kg) and (c) an electron.
An object is moving along a straight line, and the uncertainty in its position is 2.70...
An object is moving along a straight line, and the uncertainty in its position is 2.70 m. (a) Find the minimum uncertainty in the momentum of the object. Find the minimum uncertainty in the object's velocity, assuming that the object is (b) a golf ball (mass = 0.0450 kg) and (c) an electron.
Consider a hydrogen atom: a single electron that orbit the proton, the electron circular orbit has...
Consider a hydrogen atom: a single electron that orbit the proton, the electron circular orbit has radius Bohr ground state .529 angstrom. a. Calculate the magnitude of the Coulomb's force between the proton and electron b. Write this force in vector form. c. Calculate the velocity and acceleration of the electron. d. Calculate the electron's electric potential energy in electron volt.
What is the uncertainty in the velocity of an electron whose position is known to within...
What is the uncertainty in the velocity of an electron whose position is known to within 2 × 10–8 meters? If the electron is moving at a speed of 5.0 × 105 m·s–1, what fraction of this speed does the uncertainty represent?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT