Question

A 65.8-kg person throws a 0.0462 kg snowball forward with a ground speed of 32.5 m/s....

A 65.8-kg person throws a 0.0462 kg snowball forward with a ground speed of 32.5 m/s. A second person, with a mass of 58.7 kg, catches the snowball. Both people are on skates. The first person is initially moving forward with a speed of 2.51 m/s, and the second person is initially at rest. (Disregard the friction between the skates and the ice.) (a) What is the speed of the thrower after the snowball is exchanged? (b) What is the speed of the catcher after the snowball is exchanged?

Homework Answers

Answer #1

Concept: use the momentum conservation principle first considering thrower and the snowball as a system to find the thrower’s speed and then consider the snowball and the catcher as a system

***************************************************************************************************
This concludes the answers. If there is any mistake, let me know immediately and I will fix it....

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 69.0-kg person throws a 0.0400-kg snowball forward with a ground speed of 34.0 m/s. A...
A 69.0-kg person throws a 0.0400-kg snowball forward with a ground speed of 34.0 m/s. A second person, with a mass of 58.0 kg, catches the snowball. Both people are on skates. The first person is initially moving forward with a speed of 2.30 m/s, and the second person is initially at rest. What are the velocities of the two people after the snowball is exchanged? Disregard the friction between the skates and the ice. thrower          m/s catcher         ...
A 68.5-kg person throws a 0.0460-kg snowball forward with a ground speed of 35.0 m/s. A...
A 68.5-kg person throws a 0.0460-kg snowball forward with a ground speed of 35.0 m/s. A second person, with a mass of 56.5 kg, catches the snowball. Both people are on skates. The first person is initially moving forward with a speed of 3.80 m/s, and the second person is initially at rest. What are the velocities of the two people after the snowball is exchanged? Disregard the friction between the skates and the ice. thrower     m/s (Give your answer...
A 69.5-kg person throws a 0.0445-kg snowball forward with a ground speed of 35.0 m/s. A...
A 69.5-kg person throws a 0.0445-kg snowball forward with a ground speed of 35.0 m/s. A second person, with a mass of 57.0 kg, catches the snowball. Both people are on skates. The first person is initially moving forward with a speed of 2.60 m/s, and the second person is initially at rest. What are the velocities of the two people after the snowball is exchanged? Disregard the friction between the skates and the ice. (Take the direction the snowball...
This 80 kg ice skater moving at 2.5 m/s throws a 200 g puck in the...
This 80 kg ice skater moving at 2.5 m/s throws a 200 g puck in the direction he is moving at 15 m/s relative to the ice. a. Find the velocity of the ice skater after throwing the puck. (Ignore friction) b. A second skater who is 60 kg initially at rest catches the puck. Find the velocity of the second skater after catching the puck.
A wagon is rolling forward on level ground. Friction is negligible. The person sitting in the...
A wagon is rolling forward on level ground. Friction is negligible. The person sitting in the wagon is holding a rock. The total mass of the wagon, rider, and rock is 99 kg. The mass of the rock is 0.30 kg. Initially the wagon is rolling forward at a speed of 0.46 m/s. Then the person throws the rock with a speed of 15 m/s. Both speeds are relative to the ground. Find the speed of the wagon after the...
A wagon is rolling forward on level ground. Friction is negligible. The person sitting in the...
A wagon is rolling forward on level ground. Friction is negligible. The person sitting in the wagon is holding a rock. The total mass of the wagon, rider, and rock is 97.5 kg. The mass of the rock is 0.317 kg. Initially the wagon is rolling forward at a speed of 0.460 m/s. Then the person throws the rock with a speed of 16.3 m/s. Both speeds are relative to the ground. Find the speed of the wagon after the...
A 58.0- kg person holding two 0.850- kg bricks stands on a 2.70- kg skateboard. Initially,...
A 58.0- kg person holding two 0.850- kg bricks stands on a 2.70- kg skateboard. Initially, the skateboard and the person are at rest. The person now throws the two bricks at the same time so that their speed relative to the person is 15.0 m/s . Part A What is the recoil speed of the person and the skateboard relative to the ground, assuming the skateboard moves without friction? v v = m/s
A 55 kg ice skater is gliding along at 3.5 m/s. 5 seconds later her speed...
A 55 kg ice skater is gliding along at 3.5 m/s. 5 seconds later her speed has dropped to 2.9 m/s. a) What is the magnitude of the kinetic friction acting on her skates? Ignore!ofair. b) What is the coefficient of friction between the metal skate blade and the ice?
A person throws a ball from a building at a speed of 24 m/s at an...
A person throws a ball from a building at a speed of 24 m/s at an angle of 30 degrees from the horizontal. The total time the ball is in the air is 8s. What is the height of the building and how far does the ball travel before it hits the ground?
A 62 kg ice skater moving at 3.2 m/s collides with a second stationary skater with...
A 62 kg ice skater moving at 3.2 m/s collides with a second stationary skater with mass 65 kg. The skaters cling together after the collision and move without friction. Compute their speed after the collision.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT