Question

A 21.9-g bullet is shot horizontally at 1183.6 m/s. It collides with an 3.5-kg block of...

A 21.9-g bullet is shot horizontally at 1183.6 m/s. It collides with an 3.5-kg block of wood. The bullet embeds in the block, and the block slides along a horizontal surface. The coefficient of kinetic friction between the block and surface is 0.2.

How far will the block slide before friction stops it?

Homework Answers

Answer #1

first we will calculate the combined speed V of the bullet and block immediately after collision

(m1*u) = (m1+m2)*V


0.0219*1183.6 = (0.0219+3.5)*V


V = 7.35 m/s


finally the system is at rest


according toi work energy theorem

Work done by the net force = change in kinetic energy


W = Kf-Ki

Kf = 0 (since finnaly at rest)


W = -fk*S = - mu_k*m*g*S = -Ki =


mu_k*m*g*S = 0.5*m*V^2

mu_k*g*S = 0.5*v^2


distance moved is S = 0.5*v^2/(mu_k*g) = (0.5*7.35*7.35)/(0.2*9.81) = 13.76 m

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A bullet of mass 4.00 g travelling at 250 m/s embeds into a wooden block of...
A bullet of mass 4.00 g travelling at 250 m/s embeds into a wooden block of mass 2.32 kg resting on a horizontal surface. The coefficient of kinetic friction between block and surface is 0.220. The bullet remains embedded in the block slides along the surface before stopping. What distance does the block slide before coming to rest?
A 5.50 g bullet is fired horizontally into a 1.40 kg wooden block resting on a...
A 5.50 g bullet is fired horizontally into a 1.40 kg wooden block resting on a horizontal surface. The coefficient of kinetic friction between block and surface is 0.200. The bullet remains embedded in the block, which is observed to slide 0.230 m along the surface before stopping. Find the initial speed of the bullet.
A 0.0200 kg bullet moving horizontally at 400 m/s embeds itself into an initially stationary 0.500...
A 0.0200 kg bullet moving horizontally at 400 m/s embeds itself into an initially stationary 0.500 kg block. (a) What is their velocity just after the collision? m/s (b) The bullet-embedded block slides 8.0 m on a horizontal surface with a 0.30 kinetic coefficient of friction. Now what is its velocity? m/s (c) The bullet-embedded block now strikes and sticks to a stationary 2.00 kg block. How far does this combination travel before stopping? m
A 0.0220 kg bullet moving horizontally at 400 m/s embeds itself into an initially stationary 0.500...
A 0.0220 kg bullet moving horizontally at 400 m/s embeds itself into an initially stationary 0.500 kg block. (a) What is their velocity just after the collision? m/s (b) The bullet-embedded block slides 8.0 m on a horizontal surface with a 0.30 kinetic coefficient of friction. Now what is its velocity? m/s (c) The bullet-embedded block now strikes and sticks to a stationary 2.00 kg block. How far does this combination travel before stopping? m
A 0.0270 kg bullet moving horizontally at 400 m/s embeds itself into an initially stationary 0.500...
A 0.0270 kg bullet moving horizontally at 400 m/s embeds itself into an initially stationary 0.500 kg block. (a) What is their velocity just after the collision? m/s ( b) The bullet-embedded block slides 8.0 m on a horizontal surface with a 0.30 kinetic coefficient of friction. Now what is its velocity? m/s (c) The bullet-embedded block now strikes and sticks to a stationary 2.00 kg block. How far does this combination travel before stopping? m
A bullet of mass 6.00 g is fired horizontally into a wooden block of mass 1.29...
A bullet of mass 6.00 g is fired horizontally into a wooden block of mass 1.29 kg resting on a horizontal surface. The coefficient of kinetic friction between block and surface is 0.210. The bullet remains embedded in the block, which is observed to slide a distance 0.290 m along the surface before stopping. What was the initial speed of the bullet?
A 30-gram bullet is shot with an initial speed Vo and embeds in 4.0 kg block...
A 30-gram bullet is shot with an initial speed Vo and embeds in 4.0 kg block sitting on a level surface. The bulle-/block slide 12m before coming to rest. The coefficient of kinetic friction between the block and the surface is 0.6. Determine the initial speed of the bullet.
A bullet of mass m is fired into a block of mass M that is at...
A bullet of mass m is fired into a block of mass M that is at rest. The block, with the bullet embedded, slides distance d across a horizontal surface. The coefficient of kinetic friction is ?k. What is the speed of a 9.0 g bullet that, when fired into a 8.0 kg stationary wood block, causes the block to slide 5.6 cm across a wood table? Assume that ?k=0.20.
A bullet of mass m is fired into a block of mass M that is at...
A bullet of mass m is fired into a block of mass M that is at rest. The block, with the bullet embedded, slides distance d across a horizontal surface. The coefficient of kinetic friction is μk​ A) What is the speed of a 12 g bullet that, when fired into a 9.0 kg stationary wood block, causes the block to slide 5.6 cm across a wood table? Assume that μk=0.20 Express your answer to two significant figures and include...
A 10 g bullet is fired with 450 m/s into a 10 kg block that sits...
A 10 g bullet is fired with 450 m/s into a 10 kg block that sits at rest on a wooden table 20 cm from the edge of the table. The bullet gets embedded in the block (perfectly inelastic collision). The block, with the embedded bullet, then slides to the edge of the table and drops down with some initial velocity while leaving the edge of the table. The coefficient of kinetic friction between the block and the surface of...