Question

The electric potential in a region of space is given by V ( x,y,z ) =...

The electric potential in a region of space is given by V ( x,y,z ) = -x^2 + 2y^2 + 15. If a 5 Coulomb particle is placed at position (x,y,z)=(-2,-2,0), what is the magnitude and direction of the force it experiences?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The electric potential (V) at a certain point in space is given by: V(x, y, z)...
The electric potential (V) at a certain point in space is given by: V(x, y, z) = 5x2-3xy+xyz a) find the directional derivative of the potential at P(3,4,5) in the direction of the vector v=i+j+k b) calculate the gradient of the electric potential
In a certain region of space the electric potential is given by V=+Ax2y−Bxy2, where A = 5.00 V/m3 and B = 8.00 V/m3. Calculate the...
In a certain region of space the electric potential is given by V=+Ax2y−Bxy2, where A = 5.00 V/m3 and B = 8.00 V/m3. Calculate the magnitude of the electric field at the point in the region that has cordinates x = 2.20 m, y = 0.400 m, and z = 0 Calculate the direction angle of the electric field at the point in the region that has cordinates x = 2.20 m, y = 0.400 m, and z = 0.
The electric potential in a region is given by V(x,y,z) = -10.0x2 + 20.0xyz + 6.0y3...
The electric potential in a region is given by V(x,y,z) = -10.0x2 + 20.0xyz + 6.0y3 a) Find the electric field that produces this potential? b) Find the amount of charge contained within a cubic region in space 20 cm on a side and centered at the point (10.0 cm, 10.0 cm, 10.0 cm).
The electric potential in a region of space is V=( 260 x2− 160 y2)V, where x...
The electric potential in a region of space is V=( 260 x2− 160 y2)V, where x and y are in meters. What is the direction of the electric field at (x,y)=(2.0m,2.0m)? Give the direction as an angle (in degrees) counterclockwise from the positive x-axis. THe strenght of the electric field is 1200 V/m.
The electric potential in a region of space is V=( 260 x2− 160 y2)V, where x...
The electric potential in a region of space is V=( 260 x2− 160 y2)V, where x and y are in meters. What is the strength of the electric field at  (x,y)=(2.0m,2.0m) ? What is the direction of the electric field at  (x,y)=(2.0m,2.0m)? Give the direction as an angle (in degrees) counterclockwise from the positive x-axis.
The electric potential in a region of space as a function of position x is given...
The electric potential in a region of space as a function of position x is given by the equation V(x) = αx2 + βx - γ, where α = 2V/m2, β = 7V/m, and γ = 15V. All nonelectrical forces are negligible. An electron starts at rest at x = 0 and travels to x = 20 m. Calculate the magnitude of the work done on the electron by the electric field during this process. Calculate the speed of the...
In a region of space, there is an electric field. At a particular point, the electric...
In a region of space, there is an electric field. At a particular point, the electric field is E = (5.0(i-hat) + 12(j-hat)) V/m. A point charge of −300 nC is placed at this point. What is the magnitude of the force on the point charge? What is the x-component and y-component of the force on the point charge? What is the direction of the force on the point charge?
Suppose that over a certain region of space the electrical potential V is given by the...
Suppose that over a certain region of space the electrical potential V is given by the following equation. V(x,y,z)=3x^2 - 2xy +xyz a. find the rate of change of the potential at P (4,6,5) in the direction of the vector v=i-j-k b. In which direction does V change most rapidly at P? c. What is the maximum rate of change at P?
In some region of space the electric potential is V(x) = 2sin(2x) + 2x. What is...
In some region of space the electric potential is V(x) = 2sin(2x) + 2x. What is the electric field in this region? What would an electron do if placed at x = pi/3 m, move left, right, or stand still?
Suppose that over a certain region of space the electrical potential V is given by the...
Suppose that over a certain region of space the electrical potential V is given by the following equation. V(x, y, z) = 5x2 − 2xy + xyz (a) Find the rate of change of the potential at P(4, 6, 4) in the direction of the vector v = i + j − k. (b) In which direction does V change most rapidly at P? (c) What is the maximum rate of change at P?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT