Question

A projectile is fired with an initial speed of 36.5 m/sat an angle of 42.5 ∘...

A projectile is fired with an initial speed of 36.5 m/sat an angle of 42.5 ∘ above the horizontal on a long flat firing range.

A) Determine the maximum height reached by the projectile.

Express your answer using three significant figures and include the appropriate units.

B) Determine the total time in the air.

Express your answer using three significant figures and include the appropriate units.

C) Determine the total horizontal distance covered (that is, the range).

Express your answer using three significant figures and include the appropriate units.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A projectile is fired with an initial speed of 48.6 m/sat an angle of 44.2 ∘...
A projectile is fired with an initial speed of 48.6 m/sat an angle of 44.2 ∘ above the horizontal on a long flat firing range. Part A Determine the maximum height reached by the projectile. ymax = nothing   m   SubmitRequest Answer Part B Determine the total time in the air. t = nothing   s   SubmitRequest Answer Part C Determine the total horizontal distance covered (that is, the range). Δx = nothing   m   SubmitRequest Answer Part D Determine the speed of...
A projectile is fired with an initial speed of 37.6 m/s at an angle of 41.7...
A projectile is fired with an initial speed of 37.6 m/s at an angle of 41.7 ∘ above the horizontal on a long flat firing range. Determine the maximum height reached by the projectile. Determine the total time in the air. Determine the total horizontal distance covered (that is, the range) Determine the speed of the projectile 1.00 s after firing.
A projectile is fired with an initial speed of 37.1 m/s at an angle of 43.1...
A projectile is fired with an initial speed of 37.1 m/s at an angle of 43.1 ∘ above the horizontal on a long flat firing range. Determine the maximum height reached by the projectile. Determine the total time in the air. Determine the total horizontal distance covered (that is, the range). Determine the speed of the projectile 1.60 s after firing.
A projectile is fired with an initial speed of 64.0 m/s at an angle of 41.2...
A projectile is fired with an initial speed of 64.0 m/s at an angle of 41.2 ∘ above the horizontal on a long flat firing range. 1. Determine the maximum height reached by the projectile. 2.Determine the total time in the air. 3. Determine the total horizontal distance covered (that is, the range). 4. Determine the speed of the projectile 1.63 s after firing. 5. Determine the direction of the projectile 1.63 s after firing.
A projectile is fired with an initial speed of 37.1 m/s at an angle of 43.1...
A projectile is fired with an initial speed of 37.1 m/s at an angle of 43.1 ∘ above the horizontal on a long flat firing range. Part A Determine the maximum height reached by the projectile. Part B Determine the total time in the air.
1. An airplane is traveling 835 km/h in a direction 41.5 ∘ west of north PART...
1. An airplane is traveling 835 km/h in a direction 41.5 ∘ west of north PART A Find the components of the velocity vector in the northerly and westerly directions. Enter your answers using three significant figures separated by a comma. PART B How far north and how far west has the plane traveled after 4.00 h? Enter your answers using three significant figures separated by a comma. BOTH QUESTIONS NEED TWO ANSWERS. 2. A football is kicked at ground...
A projectile is fired with an initial speed of 180 m/s and angle of elevation 60°....
A projectile is fired with an initial speed of 180 m/s and angle of elevation 60°. The projectile is fired from a position 110 m above the ground. (Recall g ≈ 9.8 m/s2. Round your answers to the nearest whole number.) (a) Find the range of the projectile. m (b) Find the maximum height reached. m (c) Find the speed at impact. m/s
A projectile is fired at an angle of 45 ∘ above the horizontal at a speed...
A projectile is fired at an angle of 45 ∘ above the horizontal at a speed of 106 m/s. Part A Calculate the magnitude of its velocity at t=5s. Express your answer in meters per second to two significant figures. Part B Calculate the direction of its velocity (above the horizontal) at t=5s. Express your answer in degrees to two significant figures. Part C Calculate the magnitude of its velocity at t=10s. Express your answer in meters per second to...
A projectile is fired at an angle of 45 ∘ above the horizontal at a speed...
A projectile is fired at an angle of 45 ∘ above the horizontal at a speed of 106 m/s. Part A: Calculate the magnitude of its velocity at t=5s. Express your answer in meters per second to two significant figures. (The direction of its velocity (above the horizontal) at t=5s is 19 degrees) Part B: Calculate the magnitude of its velocity at t=10s. Express your answer in meters per second to two significant figures. Part C: Calculate the direction of...
A 204-kg projectile, fired with a speed of 131 m/sat a 65.0 ∘  angle, breaks into three...
A 204-kg projectile, fired with a speed of 131 m/sat a 65.0 ∘  angle, breaks into three pieces of equal mass at the highest point of its arc (where its velocity is horizontal). Two of the fragments move with the same speed right after the explosion as the entire projectile had just before the explosion; one of these moves vertically downward and the other horizontally. A. Determine the magnitude of the velocity of the third fragment immediately after the explosion. B....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT