Question

A block of mass m = 2.6kg is attached to a single spring of spring constant...

A block of mass m = 2.6kg is attached to a single spring of spring constant k = 3.5?? and allowed to oscillate on a horizontal, frictionless surface while restricted to move in the x-direction. The equilibrium position of the block is ?=0?. At time ?=0? the mass is at position ?=−0.1? and moving with x-component of velocity ??=2.2??. What is mass's kinetic energy at time ?=7.8s? Answer in Joules.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
A mass of 3.0kg is attached to a spring with k = 500 N m ....
A mass of 3.0kg is attached to a spring with k = 500 N m . The mass is constrained to move in the x-direction on a frictionless horizontal surface. At time t = 0s the mass is 0.050m to the right of its equilibrium position moving to the right at 1.12m s . Where is the mass at t = 0.365s?
A block is attached to a horizontal spring with a spring constant of 5.0 kg s?...
A block is attached to a horizontal spring with a spring constant of 5.0 kg s? 2. The block is displaced 0.5m from equilibrium and released (see the figure below). The block executes simple harmonic motion with a period of 4.0 s .Assuming that the block is moving on a frictionless surface, and the spring is of negligible mass. a. Calculate the mass of the block? b. Determine the velocity of the block 1.0 seconds after it is released? The...
A block with a mass of 0.300 kg attached to one end of a spring can...
A block with a mass of 0.300 kg attached to one end of a spring can oscillate on a frictionless, horizontal surface. Initially the block is displaced 0.120 m from its equilibrium position and then it is released. After 0.152 s the block has not passed through the equilibrium position and is located 0.0371 m from its equilibrium position. Determine the spring constant of the spring.
A block of mass m = 0.79 kg is attached to a spring with force constant...
A block of mass m = 0.79 kg is attached to a spring with force constant 123.0 N/m. The block is free to move on a frictionless, horizontal surface as shown in the figure. The block is released from rest after the spring is stretched a distance A = 0.10 m to the right. What is the potential energy of the spring/block system 0.25 s after releasing the block?
A block of mass m is attached to a massless spring having a spring constant k...
A block of mass m is attached to a massless spring having a spring constant k and moves on a horizontal surface. It oscillates along the x-axis about its equilibrium position at x = 0. There is a frictional force of constant magnitude f between the block and the surface. Suppose the mass is pulled to the right to x = A and released at time t=0. (a) Find the position of the mass as it reaches the left turning...
A block of mass m = 2.00 kg is attached to a spring of force constant...
A block of mass m = 2.00 kg is attached to a spring of force constant k = 600 N/m as shown in the figure below. The block is pulled to a position xi = 5.35 cm to the right of equilibrium and released from rest. (a) Find the speed the block has as it passes through equilibrium if the horizontal surface is frictionless. m/s (b) Find the speed the block has as it passes through equilibrium (for the first...
. A block of mass 2.00 kg is attached to a horizontal spring with a force...
. A block of mass 2.00 kg is attached to a horizontal spring with a force constant of 500 N/m. The spring is stretched 5.00 cm from its equilibrium position and released from rest. Use conservation of mechanical energy to determine the speed of the block as it returns to equilibrium (a) if the surface is frictionless (b) if the coefficient of kinetic friction between the block and the surface is 0.350
A mass-spring oscillator consists of a 1.95-kg block attached to a spring of spring constant 145...
A mass-spring oscillator consists of a 1.95-kg block attached to a spring of spring constant 145 N/m. At time t = 2.30 s, the position and the velocity of the block are x = 0.130 m and v = 5.84 m/s respectively. What was the position of the block at t = 0? What was the speed of the block at t = 0?
A block of mass m = 4.5 kg is attached to a spring with spring constant...
A block of mass m = 4.5 kg is attached to a spring with spring constant k = 610 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 29° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.13. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT