Question

A uniform metal rod, with a mass of 3.0 kg and a length of 1.1 m...

A uniform metal rod, with a mass of 3.0 kg and a length of 1.1 m , is attached to a wall by a hinge at its base. A horizontal wire bolted to the wall 0.55 mabove the base of the rod holds the rod at an angle of 30 ? above the horizontal. The wire is attached to the top of the rod.

(a) Find the tension in the wire

T = ________ N

(b) Find the hortizonal component of the force extended on the rod by the hinge.

Fhor = ________ N

(c) Find the vertical component of the force exerted on the rod by the hinge.

Fver = _____ N

Homework Answers

Answer #1

A) Weight mg = 3.0 x 9.8 = 29.4 N
Let T = tension in the wire
Calculate torques about the hinge.
Torque of T = T * 0.55
Torque of weight = mg * L/2 cos(300)
These torques are in opposite directions.
Net torque = 0
Therefore T * 0.55 = mg * L/2 cos(300)
T = mg * L/2 * cos(300) / 0.55
= 29.4 * (1.1/2 )* cos(300) / 0.55
T= 25.46N


B) Net horizontal force = 0.
Therefore horizontal component of foce by the hinge = T = 25.46 N

C) Net vertical force = 0
Therefore vertical component of force by the hinge = mg
= 29.4N

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A uniform rod AB of length 7.2 m and mass M = 3.8 kg is hinged...
A uniform rod AB of length 7.2 m and mass M = 3.8 kg is hinged at A and held in equilibrium by a light cord. A load W = 22 N hangs from the rod at a distance d so that the tension in the cord is 80 N . Part A) Determine the vertical force on the rod exerted by the hinge. Part B)Determine the horizontal force on the rod exerted by the hinge. Part C) Determine d...
A 560-N uniform rectangular sign 4.00 m wide and 3.00 m high is suspended from a...
A 560-N uniform rectangular sign 4.00 m wide and 3.00 m high is suspended from a horizontal, 6.00-m-long, uniform, 120-N rod as indicated in the figure below. The left end of the rod is supported by a hinge and the right end is supported by a thin cable making a 30.0° angle with the vertical. (Assume the cable is connected to the very end of the 6.00-m-long rod, and that there are 2.00 m separating the wall from the sign.)...
A uniform steel beam (mass 43.7 kg, length 9.79 m) is hinged at one end to...
A uniform steel beam (mass 43.7 kg, length 9.79 m) is hinged at one end to a wall and has two wires attached at the other end. Wire 1 (length 4.67 m) is horizontal and is attached to the wall, and wire 2 is vertical and is attached to the floor If the system is in equilibrium and the tension in wire 2 is 130 N, find the magnitude of the tension in wire 1, in N.        
1. A uniform bar of length 4.7 m and mass 4.4 kg is attached to a...
1. A uniform bar of length 4.7 m and mass 4.4 kg is attached to a wall through a hinge mechanism which allows it to rotate freely. The other end of the bar is supported by a rope of length 5.6 m which is also connected to the wall. What is the tension in the rope in N? 2. A uniform bar of length 5 m and mass 4.2 kg is attached to a wall through a hinge mechanism which...
One end of a light uniform rod is attached to a wall by a frictionless hinge....
One end of a light uniform rod is attached to a wall by a frictionless hinge. The rod is held in a horizontal position by a wire that runs from the other end of the rod to the wall. The wire has length 2.00m and makes an angle of 30.0∘ with the rod. A block with mass m is suspended by a light rope attached to the middle of the rod. The transverse fundamental standing wave on the wire has...
In the figure, a uniform beam with a weight of 56.9 N and a length of...
In the figure, a uniform beam with a weight of 56.9 N and a length of 3.75 m is hinged at its lower end, and a horizontal force  of magnitude 58.2 N acts at its upper end. The beam is held vertical by a cable that makes angle θ = 20.8° with the ground and is attached to the beam at height h = 2.04 m. What are (a) the tension in the cable, (b) the x-component of the force on...
A shop sign weighing 215N is supported by a uniform 130N beam of length L =...
A shop sign weighing 215N is supported by a uniform 130N beam of length L = 1.67m. 1. The guy wire is connected D = 1.20m from the backboard. Find the tension in the guy wire. Assume theta = 42.4o 2. Find the horizontal force exerted by the hinge on the beam. 3. Find the vertical force exerted by the hinge on the beam. Use "up" as the positive direction.
A thin rod of mass 0.600 kg and length 1.38 m is at rest, hanging vertically...
A thin rod of mass 0.600 kg and length 1.38 m is at rest, hanging vertically from a strong, fixed hinge at its top end. Suddenly, a horizontal impulsive force (15.2î) N is applied to it. (a) Suppose the force acts at the bottom end of the rod. Find the acceleration of its center of mass. a = ? m/s2 (b) Find the horizontal force the hinge exerts. F = ? N (c) Suppose the force acts at the midpoint...
14 of 15 Constants You are a summer intern for an architectural firm. An 8.00-m-long uniform...
14 of 15 Constants You are a summer intern for an architectural firm. An 8.00-m-long uniform steel rod is to be attached to a wall by a frictionless hinge at one end. The rod is to be held at 24.0 ∘ below the horizontal by a light cable that is attached to the end of the rod opposite the hinge. The cable makes an angle of 38.0 ∘ with the rod and is attached to the wall at a point...
A farm gate (Fig. P12.44) is 3.00 m wide and 1.80 m high, with hinges attached...
A farm gate (Fig. P12.44) is 3.00 m wide and 1.80 m high, with hinges attached to the top and bottom. The guy wire makes an angle of 30.0° with the top of the gate and is tightened by a turnbuckle to a tension of 200 N. The mass of the gate is 40.0 kg. (Assume that the positive directions are upward and to the right.) Find the horizontal force exerted by the upper hinge. What if? What must be...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT