Question

A particle has a constant acceleration of vector a = (5.9 m/s2)i + (3.8 m/s2)j ....

A particle has a constant acceleration of vector a = (5.9 m/s2)i + (3.8 m/s2)j . At time t = 0, t... A particle has a constant acceleration of vector a = (5.9 m/s2)i + (3.8 m/s2)j . At time t = 0, the velocity is zero and the position vector is vector r0 = (11.1 m)i.

(a) Find the velocity and position vectors as functions of time t.

V= m/s

r= m

(b) Find the equation of the particle's path in the xy plane. (Use the following as necessary: x.)

y= m

Sketch the path. please SKETCH !

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
please ASAP!! Suppose that a particle has the following acceleration vector and initial velocity and position...
please ASAP!! Suppose that a particle has the following acceleration vector and initial velocity and position vectors. a(t)  =  5 i  +  9t k,    v(0)  =  3 i  −  j,    r(0)  =  j  +  6 k (a) Find the velocity of the particle at time t. (b) Find the position of the particle at time t.
A particle has a constant acceleration of a = axi + ayj and at t =...
A particle has a constant acceleration of a = axi + ayj and at t = 0 it is at rest at the origin What is the particle’s position as a function of time? What is the particle’s velocity as a function of time? What is the particle’s path, expressed as y as a function of x? The position of a particle is given by r = (at2)i + (bt3)j + (ct-2)k, where a, b, and c are constants. What...
A particle moving in the xy-plane has velocity v⃗ =(2ti+(3−t2)j)m/s, where t is in s. What...
A particle moving in the xy-plane has velocity v⃗ =(2ti+(3−t2)j)m/s, where t is in s. What is the x component of the particle's acceleration vector at t = 7 s? What is the y component of the particle's acceleration vector at t = 7 s?
A particle moves in the x-y plane under a constant acceleration with scalar components ax =...
A particle moves in the x-y plane under a constant acceleration with scalar components ax = 2 m/s2 and ay = -3 m/s2 . It starts from the origin at t=0 with an initial speed of 6m/s in the positive y direction. What is the time t>0 at which the scalar components of particle's position are equal to one another?
A particle is constrained to travel along a path on the xy-plane. r_x=(4t^4)m and r_y=2(sqrt(x)) where...
A particle is constrained to travel along a path on the xy-plane. r_x=(4t^4)m and r_y=2(sqrt(x)) where t is in seconds(rx and ry are the direction vectors of the particle), determine the magnitude of the particle's velocity and acceleration when t=0.5s
The acceleration of a particle moving only on a horizontal xy plane is given by a→=3ti^+4tj^,...
The acceleration of a particle moving only on a horizontal xy plane is given by a→=3ti^+4tj^, where a→ is in meters per second-squared and t is in seconds. At t = 0, the position vector r→=(19.0m)i^+(44.0m)j^ locates the particle, which then has the velocity vector v→=(5.40m/s)i^+(1.70m/s)j^. At t = 4.10 s, what are (a) its position vector in unit-vector notation and (b) the angle between its direction of travel and the positive direction of the x axis?
Find the velocity and position vectors of a particle that has the given acceleration and the...
Find the velocity and position vectors of a particle that has the given acceleration and the given initial velocity and position. a(t) = (6t + et) i + 12t2 j, v(0) = 3i, r(0) = 7 i − 3 j v(t)= r(t)=
Let C be the path of a moving particle with position vector 〈 t a n...
Let C be the path of a moving particle with position vector 〈 t a n ( t ) , s e c ( t ) , 2 〉 for t ∈ ( − π 2 , π 2 ). Completely describe and sketch the curve C and indicate its orientation. Calculate the position, velocity and acceleration vectors for t = 0, and sketch them together with the curve.
Find the velocity and position vectors of a particle that has the given acceleration and the...
Find the velocity and position vectors of a particle that has the given acceleration and the given initial velocity and position. a(t) = 2 i + 6t j + 12t2 k, v(0) = i, r(0) = 3 j − 6 k
A particle moves in the xy plane, starting from the origin at t=0 with an initial...
A particle moves in the xy plane, starting from the origin at t=0 with an initial velocity having an x-component of 6 m/s and y component of 5 m/s. The particle experiences an acceleration in the x-direction, given by ax=4t m/s2. Determine the acceleration vector at any later time. Determine the total velocity vector at any later time Calculate the velocity and speed of the particle at t=5.0 s, and the angle the velocity vector makes with the x-axis. Determine...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT