Question

A linearly-polarized sinusoidal electromagnetic wave propagates in the –x direction. At a particular moment in time,...

A linearly-polarized sinusoidal electromagnetic wave propagates in the –x direction. At a particular moment in time, the magnetic field at point (–4, 0, 0) points in the –z direction. At that same moment at (–4, 0, 0), what is the direction of the electric field? Drawing a diagram should help. Group of answer choices –z direction +z direction +y direction –y direction

Homework Answers

Answer #1

Consider E and B are the electric and magnetic fields. The direction of the vector product of E and B is the direction of propagation.
Consider that the electric field is pointed along .
Then X (- ) = -
X =
For this relation to be correct, =
So, the direction of electric field is along +y direction.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A sinusoidal plane electromagnetic wave propagates in the space in the + y direction. If the...
A sinusoidal plane electromagnetic wave propagates in the space in the + y direction. If the direction and amplitude (9V / m) of the electrical component of this wave is i, what is the magnetic direction and amplitude? Emergency please!!
Problem 1 An electromagnetic wave propagates along the +y direction. If the electric field at the...
Problem 1 An electromagnetic wave propagates along the +y direction. If the electric field at the origin is along the +z direction, what is the direction of the magnetic field 2 If an electromagnetic wave has components Ey = E0 sin(kx - ?t) and Bz = B0 sin(kx - ?t), in what direction is it traveling?
Consider a sinusoidal electromagnetic wave propagating in the +x direction, whose electric field is parallel to...
Consider a sinusoidal electromagnetic wave propagating in the +x direction, whose electric field is parallel to the y axis. The wave has wavelength 475 nm, and the electric field has amplitude 3.20 x 10^-3 V m-1. What is the frequency of the wave? What is the amplitude of the magnetic field? What are the vector equations for E(x,t) and B(x,t)?
If the magnetic field of an electromagnetic wave is in the +-direction and the electric field...
If the magnetic field of an electromagnetic wave is in the +-direction and the electric field of the wave is in the +-direction, the wave is traveling in the -x-direction. -y-direction. +z-direction. xy-plane. -z-direction.
A plane electromagnetc sinusoidal wave of frequency 40 MHz tavels free space in the x-direction. at...
A plane electromagnetc sinusoidal wave of frequency 40 MHz tavels free space in the x-direction. at some point and at some instant, the electric field E has its maximum value of 700 N/C and is along the y-axis. (a.) draw an illustration of the electromagnetic wve in a coordinate system, and determine the wavelength and period of the wave. (b.) calculate the magnitude and direction of the magnetic field B when E= 700 N/C in the x-direction. (c) what is...
At a certain instant in time, the electric field of an electromagnetic wave in free space...
At a certain instant in time, the electric field of an electromagnetic wave in free space points in the -z direction, and the magnetic field points in the +y direction. In what direction is this wave traveling? A) +x direction ___B) -x direction ___ C) +y direction ___D) -z direction ___E) +z direction ___ Please explain why you chose your answer
a plane electromagnetic sinusoidal wave propagating in the x direction. Suppose the wavelength is 48.0 m...
a plane electromagnetic sinusoidal wave propagating in the x direction. Suppose the wavelength is 48.0 m and the electric field vibrates in the xy plane with an amplitude of 20.0 V/m. (a) Calculate the frequency of the wave.__________ MHz (b) Calculate the magnetic field B when the electric field has its maximum value in the negative y direction. magnitude __________nT (c) Write an expression for B with the correct unit vector, with numerical values for Bmax, k, and ω, and...
A plane monochromatic electromagnetic wave with wavelength λ = 4.9 cm, propagates through a vacuum. Its...
A plane monochromatic electromagnetic wave with wavelength λ = 4.9 cm, propagates through a vacuum. Its magnetic field is described by B⃗ =(Bxi^+Byj^)cos(kz+ωt) where Bx = 3.8 X 10-6 T, By = 3.2 X 10-6 T, and i-hat and j-hat are the unit vectors in the +x and +y directions, respectively. 1) What is f, the frequency of this wave? 2) What is I, the intensity of this wave? 3) What is Sz, the z-component of the Poynting vector at...
The plane monochromatic electromagnetic wave has frequency ?, polarized in the positive ?-axis direction moving towards...
The plane monochromatic electromagnetic wave has frequency ?, polarized in the positive ?-axis direction moving towards the positive ?-axis direction. The amplitude of the electric field is ?0, and the start of time is chosen so that at ? = 0, the electric field has a value ?0/2 at the origin. Give answers with only the variables above and speed of light is c and permittivity ?0. a. Write the electric field of the wave. b. Find the associated magnetic...
A sinusoidal plane electromagnetic wave having a frequency of 3.00 GHz travels in the positive x...
A sinusoidal plane electromagnetic wave having a frequency of 3.00 GHz travels in the positive x direction. If the amplitude of the electric field is 300 V.m-1 and the speed of light in vacuum is taken as 3.0 x 108 m.s-1, write down wave equation in terms of E(x,t) and B(x,t), where x is in meters and t is in seconds for the electric field and the magnetic field.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT