Question

A finite line of charge with linear charge density ?=2.90×10−6 C/m and length ?=0.566 m is...

A finite line of charge with linear charge density ?=2.90×10−6 C/m and length ?=0.566 m is located along the ? ‑axis (from ?=0 to ?=?). A point charge of ?=−6.00×10−7 C is located at the point ?0=1.28 m, ?0=3.00 m. Find the electric field (magnitude and direction as measured from the +? ‑axis) at the point P, which is located along the ? ‑axis at ?P=10.10 m. The Coulomb force constant is ?=1/(4?/?0)=8.99×109 (N⋅m2)/C2.

Homework Answers

Answer #1

The electric field due to a point charge 'q' located at (x0, y0) at a point (xp, yp) which is at a distance 'r' from it is given as -

Where ' is the unit vector along the line joining (x0, y0) and (xp, yp).

And the electric field due to a finite line charge can be derived as shown below -

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two charges are located in the x�y plane. If q1 = -2.90 nC and is located...
Two charges are located in the x�y plane. If q1 = -2.90 nC and is located at x = 0.00 m, y = 0.920 m and the second charge has magnitude of q2 = 3.40 nC and is located at x = 1.00 m, y = 0.600 m, calculate the x and y components, Ex and Ey, of the electric field, , in component form at the origin, (0,0). The Coulomb Force constant is 1/(4? ?0) = 8.99 � 109...
3. A line is uniformly charged with positive charge. This line of charge has a constant...
3. A line is uniformly charged with positive charge. This line of charge has a constant linear charge density of 84 C/m and extends along the positive y axis from 0 to L=8 cm. The electric field at position a=2 cm along the positive x axis makes an angle with it. Calculate such an angle (in degrees). (Coulomb’s constant k = 1/4πε0 = 8.99 × 109 N ∙ m2/C2).
An infinite line of charge with linear density λ1 = -6.7μC/m is positioned along the axis...
An infinite line of charge with linear density λ1 = -6.7μC/m is positioned along the axis of a thick conducting shell of inner radius a = 2.6 cm and outer radius b = 5.4 cm and infinite length. The conducting shell is uniformly charged with a linear charge density λ 2 = 3.5 μC/m. 1) What is Ex(P), the electric field at point P, located at (x,y) = (-8.6 cm, 0 cm) ?
An infinitely long line charge of uniform linear charge density λ = -2.10 µC/m lies parallel...
An infinitely long line charge of uniform linear charge density λ = -2.10 µC/m lies parallel to the y axis at x = -3.00 m. A point charge of 2.40 µC is located at x = 2.00 m, y = 3.00 m. Find the electric field at x = 3.00 m, y = 2.50 m.
A charge (uniform linear density = 6 nC/m) is distributed along the x axis from x...
A charge (uniform linear density = 6 nC/m) is distributed along the x axis from x = 0 to x = 3.0 m. Determine the magnitude of the electric field at a point on the x axis with x = 4.0 m.
Two charges are located in the ?–? plane. If ?1=−3.95 nC and is located at (?=0.00...
Two charges are located in the ?–? plane. If ?1=−3.95 nC and is located at (?=0.00 m,?=0.720 m), and the second charge has magnitude of ?2=3.80 nC and is located at (?=1.50 m,?=0.650 m), calculate the ? and ? components, ??and ??, of the electric field, ?⃗, in component form at the origin, (0,0). The Coulomb force constant is 1/(4??0)=8.99×109 N⋅m2/C2.
An infinite line charge of uniform linear charge density lambda = -2.7 microC/m lies parallel to...
An infinite line charge of uniform linear charge density lambda = -2.7 microC/m lies parallel to the y axis at x = 0 m. A point charge of 3.5 microC is located at x = 1.0 m, y = 2.0 m. Find the x component of the electric field at x = 2.0 m, y = 1.5 m.
A continuous distribution of linear charge exists along the entire length of the y-axis, and has...
A continuous distribution of linear charge exists along the entire length of the y-axis, and has a uniform linear charge density of λ = 45.0 pC/m = 45.0✕10-12 C/m. What is the net electric flux through the surface of a sphere of radius r = 3.20 m, if it is located at the following positions? εo = 8.854✕10-12 C2/(Nm2) (A) The sphere is centered on the origin. ΦE =_____ Nm2/C (B) The sphere is centered on the point x =...
Two charges are located in the x�y plane. If q1 = -2.30 nC and is located...
Two charges are located in the x�y plane. If q1 = -2.30 nC and is located at x = 0.00 m, y = 1 m and the second charge has magnitude of q2 = 3.00 nC and is located at x = 1.40 m, y = 0.500 m, calculate the x and y components, Ex and Ey, of the electric field, , in component form at the origin, (0,0). The Coulomb Force constant is 1/(4pi E0) = 8.99 � 109...
A charge (uniform linear density = 9.0 nC/m) is distributed along the x axis from x...
A charge (uniform linear density = 9.0 nC/m) is distributed along the x axis from x = 0 to x = 3.0 m. Determine the magnitude of the electric field at a point on the x axis with x = 4.0 m. The answer is 61 i want to see the solution to this problem
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT