Question

A satellite is in a circular orbit around the Earth at an altitude of 1.52 106...

A satellite is in a circular orbit around the Earth at an altitude of 1.52 106 m.

(a) Find the period of the orbit. (Hint: Modify Kepler's third law so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38 106 m, and the mass of the Earth is 5.98 1024 kg.)

____h

(b) Find the speed of the satellite.

____km/s

(c) Find the acceleration of the satellite.

____m/s2 toward the center of the earth

Homework Answers

Answer #1

Solution:

Orbit radius, R = 1.52*106m + 6.38*106m

R = 7.9*106 m

b)The centripetal force is provided by grav. attraction ..

Ms.v2/R = G.Me.Ms / R2

v2 = G.Me / R =  (6.67*10-11) * (5.98*1024) / (7.9*106)

v2 = 5.05*107

v = 7.1*103 m/s = 7.1 km/s

c) Orbit accel. = centripetal accel = v2/R = (7.1*103)² / (7.9*106)

a = 6.40 m/s2

a) Period, T = 2πR / v

T = 2 *(7.9*106 m) / (7.1*106 m/s)

T = 6.98*103 s = 1.95 hr

I hope you understood the problem and got your answers, If yes rate me!! or else comment for a better solutions

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A satellite is in a circular orbit around the Earth at an altitude of 3.32 106...
A satellite is in a circular orbit around the Earth at an altitude of 3.32 106 m. (a) Find the period of the orbit. (Hint: Modify Kepler's third law so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38 106 m, and the mass of the Earth is 5.98 1024 kg.) h (b) Find the speed of the satellite. km/s (c) Find the acceleration of the satellite. m/s2 toward the...
A satellite is in a circular orbit around the Earth at an altitude of 3.84  106 m....
A satellite is in a circular orbit around the Earth at an altitude of 3.84  106 m. (a) Find the period of the orbit. (Hint: Modify Kepler's third law so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38  106 m, and the mass of the Earth is 5.98  1024 kg.) h (b) Find the speed of the satellite. km/s (c) Find the acceleration of the satellite. m/s2 toward the center of the...
A satellite is in a circular orbit around the Earth at an altitude of 1.66 106...
A satellite is in a circular orbit around the Earth at an altitude of 1.66 106 m. (a) Find the period of the orbit (in hrs). (Hint: Modify Kepler's third law: T2 = (4π2/GMS)r3 so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38 106 m, and the mass of the Earth is 5.98 1024 kg.) (b) Find the speed of the satellite (in km/s). (c) Find the acceleration of...
A satellite is in a circular orbit around the Earth at an altitude of 3.78 106...
A satellite is in a circular orbit around the Earth at an altitude of 3.78 106 m.(Hint: Solve the parts in reverse order.) (a) Find the period of the orbit. h (b) Find the speed of the satellite. (c) Find the acceleration of the satellite. m/s2 toward the center of the earth
A satellite of mass 1525 kg is in circular orbit around Earth. The radius of the...
A satellite of mass 1525 kg is in circular orbit around Earth. The radius of the orbit of the satellite is equal to 1.5 times the radius of Earth (RE = 6.378*106 m, ME = 5.98*1024 kg, G = 6.67*10-11 Nm2/kg2). (a) Find the orbital period of the satellite? (b) Find the orbital (tangential) velocity of the satellite.  (c) Find the total energy of the satellite?
A 4,000 kg satellite is traveling in a circular orbit 200 km above the surface of...
A 4,000 kg satellite is traveling in a circular orbit 200 km above the surface of the Earth. A 30.0 gram marble is dropped inside the satellite. What is the force of gravity on the marble as viewed by the observers on the Earth? (ME = 5.98 × 1024 kg, RE = 6.37 × 106 m, G = 6.67 × 10−11 N·m2/kg2) A 5,000 kg satellite is orbiting the Earth in a circular path. The height of the satellite above...
A satellite is in a circular orbit around Earth with an altitude equal to 2.50 times...
A satellite is in a circular orbit around Earth with an altitude equal to 2.50 times Earth's radius. What is the magnitude of the centripetal acceleration of this satellite? [Hint: you do not need to look up Earth's mass or radius to solve this one.] can you solve this?
A satellite in a circular orbit around the earth with a radius 1.019 times the mean...
A satellite in a circular orbit around the earth with a radius 1.019 times the mean radius of the earth is hit by an incoming meteorite. A large fragment (m = 69.0 kg) is ejected in the backwards direction so that it is stationary with respect to the earth and falls directly to the ground. Its speed just before it hits the ground is 367.0 m/s. a)Find the total work done by gravity on the satellite fragment. RE 6.37·103 km;...
1. A satellite is in a circular orbit about the earth (ME = 5.98 x 1024...
1. A satellite is in a circular orbit about the earth (ME = 5.98 x 1024 kg). The period of the satellite is 2.35 x 104 s. What is the speed at which the satellite travels? 2. Two satellites are in circular orbits around the earth. The orbit for satellite A is at a height of 545 km above the earth’s surface, while that for satellite B is at a height of 787 km. Find the orbital speed for (a)...
A satellite moves in a circular orbit around the Earth. If the mass of the satellite...
A satellite moves in a circular orbit around the Earth. If the mass of the satellite increased four times, how will its orbiting speed be affected? a. the orbiting speed will quadruple b. the orbiting speed will decrease too half c. the orbiting speed will double d. none of the given answers is correct e. the orbiting speed will not be affected