Question

Q8 a) Define (i) Specific Heat Capacity, (ii) Specific Latent Heat. b) 500g of water at...

Q8
a) Define (i) Specific Heat Capacity, (ii) Specific Latent Heat.
b) 500g of water at temperature of 15°C is placed in a freezer. The freezer has a power rating of 100W and is 80% efficient.
(i) Calculate the energy required to convert the water into ice at a temperature of -20°C.
(ii) How much energy is removed every second from the air in the freezer?
(iii) How long will it take the water to reach a temperature of -20°C?
(iiii) Explain the process that cools the air in the freezer.
(v) The freezer causes the room temperature to rise. Explain why.
Specific heat capacity of ice =2100J kg-1K-1; Specific heat capacity of water
=4180J kg-1K-1; Specific latent heat of fusion of water = 3.3x105Jkg-1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
500g of water at temperature of 15°C is placed in a freezer. The freezer has a...
500g of water at temperature of 15°C is placed in a freezer. The freezer has a power rating of 100W and is 80% efficient. 1- Calculate the energy required to convert the water into ice at a temperature of -20°C. 2- How much energy is removed every second from the air in the freezer? 3- How long will it take the water to reach a temperature of -20°C? 4- Explain the process that cools the air in the freezer. 5-...
1. A gallon of water is receiving 100 J of latent heat. In that process its...
1. A gallon of water is receiving 100 J of latent heat. In that process its temperature a. increases b. decreases c. remains constant 2. A 100 kg rock is at rest. It is then dropped and falls through a height of 20 m. How fast is it approximately moving after dropping that distance? a. 10 m/s b. 15 m/s c. 20 m.s d. 25 m/s e. None of the above 3. Of the following processes, which one involves the...
A 60 kg block of ice begins at -60 degrees the specific heat of ice is...
A 60 kg block of ice begins at -60 degrees the specific heat of ice is 2090 j/(kg)C. The latent heat of fusion of water is 3.3 x 10^5 and the latent heat of vaporization is 2.3 x 10^6 J/kg. How much energy is required to heat the ice to 0 degrees Celcius (melting point)? How much energy is required to heat the ice from -50C to the melting point and melt the ice? How much energy is required to...
How much heat is needed to convert 10 kg of water at 30◦C to: (a) water...
How much heat is needed to convert 10 kg of water at 30◦C to: (a) water at 100◦C? (b) steam? (c) ice? Take: Specific heat capacity of water = 4.186 kJ/kg◦C Latent heat of vaporization of water = 2264 kJ/kg Latent heat of fusion of water = 333 kJ/kg.
The specific heat of water in its solid phase (ice) is 2090 J/(kg K), while in...
The specific heat of water in its solid phase (ice) is 2090 J/(kg K), while in the liquid phase (water) its specific heat is 4190 J/(kg K). Water's latent heat of fusion is 333,000 J/kg. If you have a 2kg block of ice at -90 degrees C and you add 1,000,000 J of heat, what is its new temperature?
8.33 kg of steam at temperature of 150 ∘C has 2.23×107 J of heat removed from...
8.33 kg of steam at temperature of 150 ∘C has 2.23×107 J of heat removed from it. Determine the final temperature and phase of the result once the heat has been removed if the heat is removed at constant pressure during the gas phase. For this problem, use the specific heat (at constant pressure) for water as 1850 J/kg∘C , the latent heat of vaporization as 2.256×106 J/kg , the specific heat of liquid water as 4186 J/kg∘C , the...
The latent heat of vaporization (Lv) is similar to the latent heat of fusion (Lf), except...
The latent heat of vaporization (Lv) is similar to the latent heat of fusion (Lf), except that it relates to boiling rather than melting. For water, Lv = 2.26 x 106 J/kg. .970 kg of steam at 100°C (the boiling point of water) is put in contact with a 13.5 kg piece of metal. The initial temperature of the piece of metal is 70.0°C. When the piece of metal reaches 100°C, .0420 kg of steam has condensed.     a.         How much heat...
The latent heat of vaporization (Lv) is similar to the latent heat of fusion (Lf), except...
The latent heat of vaporization (Lv) is similar to the latent heat of fusion (Lf), except that it relates to boiling rather than melting. For water, Lv = 2.26 x 106 J/kg. .970 kg of steam at 100°C (the boiling point of water) is put in contact with a 13.5 kg piece of metal. The initial temperature of the piece of metal is 70.0°C. When the piece of metal reaches 100°C, .0420 kg of steam has condensed.     a.         How much heat...
1. You need design a freezer that will keep the temperature inside a -5.0 C and...
1. You need design a freezer that will keep the temperature inside a -5.0 C and will operate with a temperature inside at 5.0 C and will operate in a room with a temperature of 22.0 C. The freezer is to make 20.0 kg of ice at 0.0 C starting with water at 20.0 C. For water, the specific heat is 4190 J/kg-K, the heat of fusion is 333 kj/kg. a. How much energy must be removed from the water...
8.33 kg of steam at temperature of 150 ∘C has 2.23×107 J of heat removed from...
8.33 kg of steam at temperature of 150 ∘C has 2.23×107 J of heat removed from it. Determine the final temperature and phase of the result once the heat has been removed if the heat is removed at constant pressure during the gas phase. For this problem, use the specific heat (at constant pressure) for water as 1850 J/kg∘C , the latent heat of vaporization as 2.256×106 J/kg , the specific heat of liquid water as 4186 J/kg∘C , the...