Question

A block with a mass of 0.600 kg is connected to a spring, displaced in the...

A block with a mass of 0.600 kg is connected to a spring, displaced in the positive direction a distance of 50.0 cm from equilibrium, and released from rest at t = 0. The block then oscillates without friction on a horizontal surface. After being released, the first time the block is a distance of 25.0 cm from equilibrium is at t = 0.200 s.

a.What is the block's period of oscillation?
_______ s

b.What is the the numerical value of the spring constant?
_______ N/m

c.What is the block’s velocity at t = 0.200 s? If the velocity is in the negative direction, include a minus sign.
_______ m/s

d.What is the block’s acceleration at t = 0.200 s? If the acceleration is in the negative direction, include a minus sign.
_______ m/s

Homework Answers

Answer #2

I hope you understood the problem and got your answers, If yes rate me!! or else comment for a better solutions.

answered by: anonymous
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a) A block with a mass of 0.600 kg is connected to a spring, displaced in...
a) A block with a mass of 0.600 kg is connected to a spring, displaced in the positive direction a distance of 50.0 cm from equilibrium, and released from rest at t = 0. The block then oscillates without friction on a horizontal surface. After being released, the first time the block is a distance of 15.0 cm from equilibrium is at t = 0.200 s. What is the block's period of oscillation? _______ s b) A block with a...
A block is attached to a horizontal spring with a spring constant of 5.0 kg s?...
A block is attached to a horizontal spring with a spring constant of 5.0 kg s? 2. The block is displaced 0.5m from equilibrium and released (see the figure below). The block executes simple harmonic motion with a period of 4.0 s .Assuming that the block is moving on a frictionless surface, and the spring is of negligible mass. a. Calculate the mass of the block? b. Determine the velocity of the block 1.0 seconds after it is released? The...
A block attached to a horizontal spring is pulled to the right a distance of 19.0...
A block attached to a horizontal spring is pulled to the right a distance of 19.0 cm from the equilibrium position. The block is released and the block-spring system undergoes SHM at f = 1.28 Hz. Assuming that positive is to the right, determine at 0.300 s after release the block's displacement, velocity, and acceleration. Neglect friction. (Indicate the direction with the sign of your answer.)
A frictionless block of mass 2.45 kg is attached to an ideal spring with force constant...
A frictionless block of mass 2.45 kg is attached to an ideal spring with force constant 320 N/mN/m . At t=0 the spring is stretched to 6 cm from the equilibrium position and released. Find the position of the block at t=5 s Find the velocity of the block at t=5 s Find the acceleration of the block at t=5 s
A 360-g block is connected to a light spring for which the force constant is 6.00...
A 360-g block is connected to a light spring for which the force constant is 6.00 N/m is free to oscillate vertically in air. The block is displaced 2.00 cm from equilibrium and released from rest, at t = 0, x = – A. Neglect the effects of all types of resistance. Calculate the: frequency of the motion. periodic time of the motion.                                                                     maximum acceleration. maximum force acting on the body.                                                               maximum velocity.                                                                           velocity when displacement is...
A 0.200 kg mass attached to a horizontal spring is displaced 15.4 cm from rest and...
A 0.200 kg mass attached to a horizontal spring is displaced 15.4 cm from rest and then released. If the mass oscillates 8.00 times in 19.3 s, what is the spring constant in the spring? 0.0344 N/m 1.36 N/m 6.78 N/m 0.0212 N/m What is the time constant of an oscillator if its amplitude of oscillation is decreased to 32.3% of its original value in 8.50 s? 7.52 s 15.0 s 3.76 s 1.22 s A ball is attached to...
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
A block-spring system consists of a spring with constant k = 445 N/m attached to a...
A block-spring system consists of a spring with constant k = 445 N/m attached to a 2.25 kg block on a frictionless surface. The block is pulled 4.10 cm from equilibrium and released from rest. For the resulting oscillation, find the amplitude, angular frequency, frequency, and period. What is the maximum value of the block's velocity and acceleration?
A simple harmonic oscillator is made up of a mass-spring system, with mass of 2.71 kg...
A simple harmonic oscillator is made up of a mass-spring system, with mass of 2.71 kg and a spring constant k = 198 N/m. At time t=1.15 s, the position and velocity of the block are x = 0.137 m and v = 3.547 m/s. What is the velocity of the oscillation at t=0? Be sure to include the minus sign for negative velocity.
1.A 1.10 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring...
1.A 1.10 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring with k = 490 N/m. Let x be the displacement of the block from the position at which the spring is unstretched. At t = 0 the block passes through x = 0 with a speed of 3.40 m/s in the positive x direction. What are the (a) frequency and (b) amplitude of the block's motion 2.A vertical spring stretches 13 cm when a...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT