Question

A proton and an electron are fixed in space with a separation of 815 nm. Calculate...

A proton and an electron are fixed in space with a separation of 815 nm. Calculate the electric potential at the midpoint between the two particles.

potential:

Find the magnitude of the electric field at the same point. magnitude of field: N/C

SHOW ALL STEPS

Homework Answers

Answer #1

a)

Charge of proton qp=1.6*10-19 C

Charge of electron qe=-1.6*10-19 C

Electric potential due to point charge is given by

V=KQ/r

Net Electric potential at midpoint between the two charges is given by

VNet=KQ1/r1 +KQ2/r2 =(9*109)(1.6*10-19)[1/(815*10-9/2) -1/(815*10-9/2)]

VNet=0 Volts

b)

Electric field due to point charge is given by

E=KQ2/r2

Magnitude of electric field at midpoint

Enet=K|Q1|/r12+K|Q2|/r22 =(9*109)(1.6*10-19)[1/(815*10-9/2)2 + 1/(815*10-9/2)2​​​​​​​]

Enet=17343.52 N/C

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A proton and an electron are fixed in space with a separation of 837 nm. Calculate...
A proton and an electron are fixed in space with a separation of 837 nm. Calculate the electric potential at the midpoint between the two particles. potential: V Find the magnitude of the electric field at the same point. magnitude of field: N/C The direction of field is toward the proton. toward the electron. another direction. undetermined.
A proton and an electron are fixed in space with a separation of 947 nm. Calculate...
A proton and an electron are fixed in space with a separation of 947 nm. Calculate the electric potential at the midpoint between the two particles. Find the magnitude and direction of the electric field at the same point. Potential: _____V Magnitude of field: ______N/C Direction of field: (a) toward the proton (b) toward the electron (c) another direction (d) undetermined
An electron and a proton are fixed at a separation distance of 879 nm. Find the...
An electron and a proton are fixed at a separation distance of 879 nm. Find the magnitude  of the electric field at their midpoint.
Two particles, an electron and a proton, are initially at rest in a uniform electric field...
Two particles, an electron and a proton, are initially at rest in a uniform electric field of magnitude 478 N/C. If the particles are free to move, what are their speeds (in m/s) after 52.0 ns? Give the speed of both the electron and proton.
A proton and electron are separated by 3.5 nm. (Note: ke=8.99x109N.m2/C2) (a) What is the magnitude...
A proton and electron are separated by 3.5 nm. (Note: ke=8.99x109N.m2/C2) (a) What is the magnitude of the force on the electron? (b) What is the magnitude of the force on the proton? (c) What is the electric field of the proton at the electron position?
A particular electric dipole consists of a proton of charge of 1.6x10-19 Coulomb and an electron...
A particular electric dipole consists of a proton of charge of 1.6x10-19 Coulomb and an electron of charge of -1.6x10-19 Coulomb, separated by 2x10-10[m] = 0.2[nm]. 1a. What’s the electrostatic force between the charges (magnitude and direction), and why? 1b. What’s the electric field magnitude and direction at a point halfway between the two charges, and why? 1c. How much energy (in electron Volts OR in Joules) is needed to separate these two charges?
A proton and an electron are moving due east in a constant electric field that also...
A proton and an electron are moving due east in a constant electric field that also points due east. The electric field has a magnitude of 8.0 × 104 N/C. Determine the magnitude of the acceleration of the proton and the electron.
A proton and an electron are released from rest at the same time from the midpoint...
A proton and an electron are released from rest at the same time from the midpoint between two charged parallel plates. The plates are charged with equal surface charge densities of opposite signs. Ignore the interaction between the electron and the proton and consider only the interaction of each charge with the electric field of the plates. After being released, the proton will accelerate toward the negative plate, and the electron will accelerate toward the positive plate. a) Which charge...
Consider a hydrogen atom: a single electron that orbit the proton, the electron circular orbit has...
Consider a hydrogen atom: a single electron that orbit the proton, the electron circular orbit has radius Bohr ground state .529 angstrom. a. Calculate the magnitude of the Coulomb's force between the proton and electron b. Write this force in vector form. c. Calculate the velocity and acceleration of the electron. d. Calculate the electron's electric potential energy in electron volt.
(17.48) As an electron moves through a region of space, its speed decreases from 6.50 x...
(17.48) As an electron moves through a region of space, its speed decreases from 6.50 x 10^6 m/s to 2.60 x 10^6 m/s. The electric force is the only force acting on the electron. a) Did the electron move to a higher potential or a lower potential? Explain your reasoning in complete sentences. b) Across what potential difference did the electron travel? (17.62, modified) A parallel plate capacitor has plates of area 1.00 cm2 separated by 0.250 mm. There is...