Question

A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from...

A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from rest and rotates without friction about a fixed axis through its center of mass. A string is wrapped around the circumference of the cylinder and pulled using a constant force F. The resulting angular acceleration of the cylinder is 5.0 rad/s2. What's the angular velocity after 4.0 s, in radians per second? (The moment of inertia of the cylinder is 1 half M R squared.)

QUESTION 9 A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from rest and rotates without friction about a fixed axis through its center of mass. A string is wrapped around the circumference of the cylinder and pulled using a constant force F. The resulting angular acceleration of the cylinder is 5.0 rad/s2. What length of string has unwound after 4.0 s, in meters? (The moment of inertia of the cylinder is 1 half M R squared.)

Homework Answers

Answer #1

Solution:

1.)

Using angular kinematics,

= t

= 5*4

= 20 rad/s

2.)

Using angular kinematics,

= 1/2t2

= 0.5*5*42

= 40 rad.

Length unwound is l = r = 40*0.1 = 4 m.

I hope you understood the problem and got your answers, If yes rate me!! or else comment for a better solutions.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from...
A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from rest and rotates without friction about a fixed axis through its center of mass. A string is wrapped around the circumference of the cylinder and pulled using a constant force F. The resulting angular acceleration of the cylinder is 5.0 rad/s2. (The moment of inertia of the cylinder is 1/2 MR^2.) 1. What's the force F, in Newtons? 2. What's the angular velocity after...
A solid cylinder of radius 0.5 m and mass 5.0 kg, initially at rest, starts to...
A solid cylinder of radius 0.5 m and mass 5.0 kg, initially at rest, starts to rotate about an axis through its center, with an angular acceleration of 0.2 rad/s^2. (a) Assuming a piece of string is wrapped around the cylinder, in such a way that the turning cylinder pulls the string onto itself, what is the total length of string wrapped on the cylinder at t= 10s? (b) What is the linear acceleration of a knot in the string...
A light, nonstretching cable is wrapped around a solid cylinder with mass 88 kg and radius...
A light, nonstretching cable is wrapped around a solid cylinder with mass 88 kg and radius 0.19 m. The cylinder rotates with negligible friction about a stationary horizontal axis. We attach the free end of the cable to a block of mass 48 kg, and release the block from rest at a distance 3.9 m above the floor. As the block falls, the cable unwinds without stretching or slipping. Find the angular speed of the cylinder (in radians/s) the moment...
M, a solid cylinder (M=1.59 kg, R=0.111 m) pivots on a thin, fixed, frictionless bearing. A...
M, a solid cylinder (M=1.59 kg, R=0.111 m) pivots on a thin, fixed, frictionless bearing. A string wrapped around the cylinder pulls downward with a force F which equals the weight of a 0.870 kg mass, i.e., F = 8.535 N. How far does m travel downward between 0.530 s and 0.730 s after the motion begins? The cylinder is changed to one with the same mass and radius, but a different moment of inertia. Starting from rest, the mass...
A block of mass m = 2.5 kg is attached to a string that is wrapped...
A block of mass m = 2.5 kg is attached to a string that is wrapped around the circumference of a wheel of radius R = 8.8 cm . The wheel rotates freely about its axis and the string wraps around its circumference without slipping. Initially the wheel rotates with an angular speed ω, causing the block to rise with a linear speed v = 0.42 m/s A) Find the moment of inertia of the wheel if the block rises...
A block of mass m = 1.8 kg is attached to a string that is wrapped...
A block of mass m = 1.8 kg is attached to a string that is wrapped around the circumference of a wheel of radius R = 7.6 cm . The wheel rotates freely about its axis and the string wraps around its circumference without slipping. Initially the wheel rotates with an angular speed ω, causing the block to rise with a linear speed v = 0.30 m/s Find the moment of inertia of the wheel if the block rises to...
A 5.0 kg hollow cylinder of radius 0.28 m rotates freely about an axle that runs...
A 5.0 kg hollow cylinder of radius 0.28 m rotates freely about an axle that runs through its center and along its long axis. A cord is wrapped around the cylinder and is pulled straight from the cylinder with a steady tensile force of 50N. As the cord unwinds, the cylinder rotates, with no slippage between the cord and the cylinder. A) calculate the work done by the tensile force as the cylinder rotates through 1000 rad. B) if the...
a) M, a solid cylinder (M=2.43 kg, R=0.137 m) pivots on a thin, fixed, frictionless bearing....
a) M, a solid cylinder (M=2.43 kg, R=0.137 m) pivots on a thin, fixed, frictionless bearing. A string wrapped around the cylinder pulls downward with a force F which equals the weight of a 0.710 kg mass, i.e., F = 6.965 N. Calculate the angular acceleration of the cylinder. b)If instead of the force F an actual mass m = 0.710 kg is hung from the string, find the angular acceleration of the cylinder. c)How far does m travel downward...
M, a solid cylinder (M=1.39 kg, R=0.115 m) pivots on a thin, fixed, frictionless bearing. A...
M, a solid cylinder (M=1.39 kg, R=0.115 m) pivots on a thin, fixed, frictionless bearing. A string wrapped around the cylinder pulls downward with a force F which equals the weight of a 0.830 kg mass, i.e., F = 8.142 N. 1.) Calculate the angular acceleration of the cylinder. 2.) If instead of the force F an actual mass m = 0.830 kg is hung from the string, find the angular acceleration of the cylinder. 3.) How far does m...
A) M, a solid cylinder (M=1.67 kg, R=0.127 m) pivots on a thin, fixed, frictionless bearing....
A) M, a solid cylinder (M=1.67 kg, R=0.127 m) pivots on a thin, fixed, frictionless bearing. A string wrapped around the cylinder pulls downward with a force F which equals the weight of a 0.730 kg mass, i.e., F = 7.161 N. Calculate the angular acceleration of the cylinder. B) If instead of the force F an actual mass m = 0.730 kg is hung from the string, find the angular acceleration of the cylinder. C) How far does m...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT