Question

A crate of fruit with a mass of 35.0 kg and a specific heat capacity of...

A crate of fruit with a mass of 35.0 kg and a specific heat capacity of 3800 J/(kg⋅K) slides 8.40 m down a ramp inclined at an angle of 36.1 degrees below the horizontal.

If an amount of heat equal to the magnitude of the work done by friction is absorbed by the crate of fruit and the fruit reaches a uniform final temperature, what is its temperature change ΔT?

Homework Answers

Answer #1

given

m = 35 kg ,

C = 3800 J/(kg⋅K) ,

L = 8.40 m ,

= 36.1 degrees ,

v = 1 m/sec ( velocity not mentioned )

using h = L cos

h = 8.4 X cos36.1

h = 6.78 m

PE1 = m g h and PE2 = 0

and KE1 = 0 and KE2 = 1/2 mv2

TE1 = PE1 + KE1

TE1 = m g h

same way TE2 = 1/2 mv2  

TE = TE1 - TE2

TE = m g h - 1/2 m v2   

TE = 35 X 9.8 X 6.78 - 0.5 X 35 X v2  

TE = 2325.54 - 17.5

TE = 2308.04 J

Q = m C T

T = Q / m C

T = 2308.04 / 35 X 3800

T = 0.0173oC

the temperature change T = 0.0173oC

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A crate of fruit with a mass of 35.0 kg and a specific heat capacity of...
A crate of fruit with a mass of 35.0 kg and a specific heat capacity of 3800 J/(kg⋅K) slides 8.40 m down a ramp inclined at an angle of 36.1 degrees below the horizontal. Part A: If the crate was at rest at the top of the incline and has a speed of 2.65 m/s at the bottom, how much work Wf was done on the crate by friction? Use 9.81 m/s2 for the acceleration due to gravity and express...
A crate of fruit with a mass of 39.0 kg and a specific heat capacity of...
A crate of fruit with a mass of 39.0 kg and a specific heat capacity of 3600 J/(kg⋅K) slides 8.70 m down a ramp inclined at an angle of 38.3 degrees below the horizontal. Part A If the crate was at rest at the top of the incline and has a speed of 2.65 m/s at the bottom, how much work Wf was done on the crate by friction? Use 9.81 m/s2 for the acceleration due to gravity and express...
A crate of fruit with a mass of 33.5 kg and a specific heat capacity of...
A crate of fruit with a mass of 33.5 kg and a specific heat capacity of 3800 J/(kg?K) slides 8.30 m down a ramp inclined at an angle of 37.4 degrees below the horizontal. If the crate was at rest at the top of the incline and has a speed of 2.20 m/s at the bottom, how much work Wf was done on the crate by friction? Use 9.81 m/s2 for the acceleration due to gravity and express your answer...
A crate of fruit with a mass of 31.0 kg and a specific heat capacity of...
A crate of fruit with a mass of 31.0 kg and a specific heat capacity of 3600 J/(kg?K) slides 7.60 m down a ramp inclined at an angle of 36.8 degrees below the horizontal. If the crate was at rest at the top of the incline and has a speed of 2.05 m/s at the bottom, how much work Wf was done on the crate by friction? Use 9.81 m/s2 for the acceleration due to gravity and express your answer...
A worker wants to load a 12 kg crate into a truck by sliding the crate...
A worker wants to load a 12 kg crate into a truck by sliding the crate up a straight ramp which is 2.5 m long and which makes an angle of 30 degrees with the horizontal. The worker believes that he can get the crate to the very top of the ramp by launching it at 5 m/s at the bottom. Note that the worker does not keep pushing on the crate. But the worker underestimated or even forgot about...
A construction worker pushes on a 10 kg crate down an inclined plane that is 7.0...
A construction worker pushes on a 10 kg crate down an inclined plane that is 7.0 m long and is inclined at an angle of 20 degrees to the horizontal. As a result, the crate slides down the entire length of the plane with a constant speed of 3.0 m/s. Suppose that the worker pushes directly on the crate in a direction parallel to the incline with a force of 50 N for the entire length of the plane. A)...
A tension force of 155 N inclined at 35.0° above the horizontal is used to pull...
A tension force of 155 N inclined at 35.0° above the horizontal is used to pull a 27.0 kg packing crate a distance of 4.60 m on a rough surface. If the crate moves at a constant speed, find (a) the work done by the tension force and (b) the coefficient of kinetic friction between the crate and surface. (a) the work done by the tension force (in J)   (b)the coefficient of kinetic friction between the crate and surface
A 117 kg seal at an amusement park slides from rest down a ramp into the...
A 117 kg seal at an amusement park slides from rest down a ramp into the pool below. The top of the ramp is 1.85 m higher than the surface of the water and the ramp is inclined at an angle of 26.5 ∘ above the horizontal. If the seal reaches the water with a speed of 4.10 m/s, what is the work done by kinetic friction? What is the coefficient of kinetic friction between the seal and the ramp?
If a crate of mass 5 kg is shot across a flat, frictionless surface with initial...
If a crate of mass 5 kg is shot across a flat, frictionless surface with initial speed of 10 m/s towards a 0.25 m long region with a kinetic coefficient of friction equaling 0.10 , after passing through this region, it collides elastically with a second crate. The second crate has a mass of 0.5 kg. The second crate slides up a frictionless ramp 30 degrees off the horizontal. How high off the ground does the second crate travel before...
A 6.0-kg crate is pulled up a ramp by a 50-Newton force. The ramp makes a...
A 6.0-kg crate is pulled up a ramp by a 50-Newton force. The ramp makes a 30o angle with the horizontal, and the coefficient of kinetic friction between the crate and the ramp is 0.30. a) Draw a free body diagram b) What is the magnitude of the kinetic frictional force? c) What is the acceleration of the crate?