Question

A simple pendulum of length L = 10.0 m is released from an angle of .400rad....

A simple pendulum of length L = 10.0 m is released from an angle of .400rad. Assume the pendulum swings with simple harmonic motion.

c) Using conservation of energy(gravitational and kinetic), find the linear speed of the bob at its lowest point.

d) If the linear speeds found in (b) and (c) were exactly the same, explain why. If they were different explain why.

Homework Answers

Answer #1

a)
Time period, T = 2*pi*sqrt(L/g)

= 2*pi*sqrt(10/9.8)

= 6.34 s

angular frequency, w = 2*pi/T

= 2*pi/T

= 2*pi/(6.34)

= 0.99 rad/s <<<<<<<<--------Answer


b) Dont know how to do

c) given,

theta = 0.4 rad

= 0.4*(360/2*pi)

= 23 degrees

now initial height of the bob above its equilibrium point,

h = L*(1 - cos(23))

= 10*(1 - cos(23))

= 0.795 m

As the boob comes to equilibrium point its potential energy is converted to kinetic energy

m*g*h = 0.5*m*v^2

==> v = sqrt(2*g*h)

= sqrt(2*9.8*0.795)

= 3.95 m/s <<<<<<<<<<<<-----------Answer

d) part a question is not given

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The length of a simple pendulum is 0.85 m and the mass of the particle (the...
The length of a simple pendulum is 0.85 m and the mass of the particle (the "bob") at the end of the cable is 0.26 kg. The pendulum is pulled away from its equilibrium position by an angle of 7.75° and released from rest. Assume that friction can be neglected and that the resulting oscillatory motion is simple harmonic motion. (a) What is the angular frequency of the motion? rad/s (b) Using the position of the bob at its lowest...
The length of a simple pendulum is 0.68 m , the pendulum bob has a mass...
The length of a simple pendulum is 0.68 m , the pendulum bob has a mass of 295 g , and it is released at an angle of 11 ? to the vertical. Assume SHM. Part A With what frequency does it oscillate? Part B What is the pendulum bob's speed when it passes through the lowest point of the swing? Part C What is the total energy stored in this oscillation assuming no losses?
A simple pendulum has a mass of 0.450 kg and a length of 3.00 m. It...
A simple pendulum has a mass of 0.450 kg and a length of 3.00 m. It is displaced through an angle of 6.0° and then released. Solve this problem by using the simple harmonic motion model for the motion of the pendulum. (a) What is the maximum speed? ___m/s (b) What is the maximum angular acceleration? ___rad/s2 (c) What is the maximum restoring force? ___N
A simple pendulum has a mass of 0.550 kg and a length of 4.00 m. It...
A simple pendulum has a mass of 0.550 kg and a length of 4.00 m. It is displaced through an angle of 10.0° and then released. Using the analysis model of a particle in simple harmonic motion, calculate the following. (Give your answer to the thousandths place.) (a) What is the maximum speed of the bob? our response differs from the correct answer by more than 100%. m/s (b) What is the maximum angular acceleration of the bob? rad/s2 (c)...
A simple pendulum has a mass of 0.150 kg and a length of 4.00 m. It...
A simple pendulum has a mass of 0.150 kg and a length of 4.00 m. It is displaced through an angle of 7.0° and then released. Using the analysis model of a particle in simple harmonic motion, calculate the following. (Give your answer to the thousandths place.) (a) What is the maximum speed of the bob? m/s (b) What is the maximum angular acceleration of the bob? rad/s2 (c) What is the maximum restoring force of the bob? N (d)...
Consider a simple pendulum with a bob of mass 4.0 kg and a string of length...
Consider a simple pendulum with a bob of mass 4.0 kg and a string of length 45 cm. Part A: Which of the following is true for small angular displacement? a. The net torque is proportional to the negative of the angle displaced from the equilibrium b. The period is inversely proportional to the amplitude c. The kinetic energy is always equal to the potential energy d. The minimum velocity is achieved when the bob is at equilibrium Part B:...
A.) A simple pendulum is suspended from the ceiling by means of a string of length...
A.) A simple pendulum is suspended from the ceiling by means of a string of length 2.10 m. Assume that there is no friction or air resistance. Suppose you were to release the pendulum from rest, starting from an angle of 44.3 degrees with respect to the vertical, as shown. What will be the speed of the pendulum at the instant it swings through its lowest point (that is, when it s momentarily hanging vertically)? B.) OK, once again we...
A simple pendulum with mass m = 2 kg and length L = 2.67 m hangs...
A simple pendulum with mass m = 2 kg and length L = 2.67 m hangs from the ceiling. It is pulled back to an small angle of θ = 11° from the vertical and released at t = 0. 1)What is the period of oscillation? s   2)What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? N   3)What is the maximum speed of the pendulum? m/s   4)What is the angular displacement at...
A simple pendulum, consisting of a string (of negligible mass) of length L with a small...
A simple pendulum, consisting of a string (of negligible mass) of length L with a small mass m at the end, is initially held horizontal (theta = 90) and then released. a) what is the maximum velocity that the mass attains after release? b) at what angle theta, is the power delivered to the ball by gravity a maximum as the pendulum swings down? take theta = 0 when the pendulum is vertical.
In simple harmonic motion(simple pendulum), the displacement is maximum when the: A. velocity is maximum B....
In simple harmonic motion(simple pendulum), the displacement is maximum when the: A. velocity is maximum B. speed is maximum C. kinetic energy is maximum D. velocity is zero
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT