Question

Question 1:A driven and damped mass-spring oscillator has ?= 14.0 g and ?= 1.80 N/m and...

Question 1:A driven and damped mass-spring oscillator has ?= 14.0 g and ?= 1.80 N/m and ?=0.00200 kg/s. The driving frequency is Ω=11.4 rad/s and the driving acceleration is ?=3.33 cm/s2. What is the resulting oscillation amplitude?

A.1.56 cm , B.3.32 cm , C.8.20 cm , D.12.7 cm , E.17.7 cm

Question 2: A driven and damped mass-spring oscillator has ?= 14.0 g and ?= 1.80 N/m and ?=0.00200 kg/s. The driving frequency is Ω=11.4 rad/s and the driving acceleration is ?=3.33 cm/s2. What is the resulting phase angle?

A.5.13 degrees , B.15.7 degrees, C.31.0 degrees , D.49.5 degrees, E.75.8 degrees

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass 2.5 kg is connected to a spring with k=1250 N/m. (a) At...
A block of mass 2.5 kg is connected to a spring with k=1250 N/m. (a) At t = 0 the block is released from rest at x(t = 0) = 28 mm from equilibrium. The motion is linearly damped with b = 50 kg/s. Find the amplitude A and phase angle ?. (Note that the amplitude is not obviously the displacement at t = 0 as it would be for the undamped case!) (b) Now consider a driving force with...
An oscillator consists of a block attached to a spring (k = 125 N/m). At some...
An oscillator consists of a block attached to a spring (k = 125 N/m). At some time t, the position (measured from the system's equilibrium location), velocity, and acceleration of the block are x = 0.700 m, v = −12.0 m/s, and a = −128 m/s2. (a) Calculate the frequency of oscillation. Incorrect: Your answer is incorrect. Hz (b) Calculate the mass of the block. kg (c) Calculate the amplitude of the motion. m
A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of...
A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of 7.10 N is applied. A 0.440-kg particle rests on a frictionless horizontal surface and is attached to the free end of the spring. The particle is displaced from the origin to x = 5.00 cm and released from rest at t = 0. (Assume that the direction of the initial displacement is positive. Use the exact values you enter to make later calculations.) (a)...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.923 m and a duration of 129 s for 65 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 68.5% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...
Physics II HW 1 SHM   A 100 g object connected to a spring (k= 40 N/m)...
Physics II HW 1 SHM   A 100 g object connected to a spring (k= 40 N/m) oscillates on a horizontal frictionless surface with an amplitude of 4.00 cm. Find the period and the total energy of the system. What is the period of a pendulum with a length of 2 meters on Earth? On the Moon? A 5 kg mass is attached to a spring that is hanging vertically. The spring is stretched 0.25 m from its equilibrium position. What...