Question

Monochromatic light falls on two very narrow slits 0.048 mm apart. Successive fringes on a screen...

Monochromatic light falls on two very narrow slits 0.048 mm apart. Successive fringes on a screen 5.50 m away are 6.8 cm apart near the center of the pattern. Determine the wavelength of the light. Determine the frequency of the light.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits...
Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits are separated by 8 mm, and the interference pattern is projected onto a screen 7 m away from the slits. The central bright fringe is at a certain spot on the screen. Using a ruler with one end placed at the central fringe, you move along the ruler passing by two more bright fringes and find that the next bright fringe is 23.5 mm...
Coherent monochromatic light of frequency 6.15 × 1014 Hz passes through two narrow slits and falls...
Coherent monochromatic light of frequency 6.15 × 1014 Hz passes through two narrow slits and falls on a screen located 2.50 m away. The m = 20 bright fringe is at a distance of 1.45 m from the center of the pattern. (Do not use the small-angle approximation) 1) What is the distance between the two slits? 2) What is the distance of the m = 15 dark fringe from the center of the pattern?
A parallel beam of light from a He-Ne laser, with a wavelength 633 nm, falls on...
A parallel beam of light from a He-Ne laser, with a wavelength 633 nm, falls on two very narrow slits 0.070 mm apart. Part A How far apart are the fringes in the center of the pattern on a screen 4.1 m away?
A parallel beam of light from a He-Ne laser, with a wavelength 633 nm, falls on...
A parallel beam of light from a He-Ne laser, with a wavelength 633 nm, falls on two very narrow slits 0.066 mm apart. Part A How far apart are the fringes in the center of the pattern on a screen 4.1 m away? Express your answer to two significant figures and include the appropriate units.
A monochromatic light with wavelength 480.0 nm strikes a pair of narrow slits with spacing 0.100...
A monochromatic light with wavelength 480.0 nm strikes a pair of narrow slits with spacing 0.100 mm. The first dark fringe is formed on a screen at a vertical distance of 1.20 cm from the center of a screen placed in front of the slit. How far away is the screen placed What is the distance on the screen from the center of the interference pattern to the m = 3 bright fringe? What is the shortest distance from the...
1-Two slits are placed 0.2 mm apart and project an intereference pattern on a screen which...
1-Two slits are placed 0.2 mm apart and project an intereference pattern on a screen which is 1 meter away. If the distance between the central and the 3rd fringe is 7.5 mm on the screen what is the wavelength of the light used? 2-In a double slit experiment where light of wavelength of 0.00006 cm is used, the distance of the screen from the slits is 1.0 meter and the slit separation is 0.1 mm. What is the spacing...
Two narrow slits 55 μm μ m apart are illuminated with light of wavelength 620nm n...
Two narrow slits 55 μm μ m apart are illuminated with light of wavelength 620nm n m . The light shines on a screen 1.2 m m distant. a) What is the angle of the mm = 2 bright fringe? b) How far is this fringe from the center of the pattern?
Monochromatic light of wavelength λ1 is sent through two closely-spaced slits separated by a distance d1...
Monochromatic light of wavelength λ1 is sent through two closely-spaced slits separated by a distance d1 = 1.8 mm. A resulting interference pattern is shown on a screen L1 away. Another monochromatic light source, this one of wavelength λ2, is sent through a diffraction grating toward the same screen, resulting in a second interference pattern. The diffraction grating is a distance L2 from the screen and has 400 lines per mm etched onto it. A) Assume that L1 = L2...
White light falls on two narrow slits separated by 0.40 mm. The interference pattern is observed...
White light falls on two narrow slits separated by 0.40 mm. The interference pattern is observed on a screen 3.0 m away. What is the separation between the first maxima for red light (l = 700 nm) and the first maxima for violet light (l = 400 nm)?
Parallel rays of monochromatic light with wavelength 587 nm illuminate two identical slits and produce an...
Parallel rays of monochromatic light with wavelength 587 nm illuminate two identical slits and produce an interference pattern on a screen that is 75.0 cm from the slits. The centers of the slits are 0.640 mm apart and the width of each slit is 0.434 mm. If the intensity at the center of the central maximum is 3.00×10−4 W/m2 , what is the intensity at a point on the screen that is 0.710 mm from the center of the central...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT