Question

A slit 0.350 mm wide is illuminated by parallel rays of light that have a wavelength...

A slit 0.350 mm wide is illuminated by parallel rays of light that have a wavelength of 600 nm . The diffraction pattern is observed on a screen that is 1.30 m from the slit. The intensity at the center of the central maximum (θ=0∘) is I0.

A

What is the distance on the screen from the center of the central maximum to the first minimum? in mm

B

What is the distance on the screen from the center of the central maximum to the point where the intensity has fallen to I02? ((Hint: Your equation for β cannot be solved analytically. You must use trial and error or solve it graphically.) in mm

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. A slit 1.24 mm wide is illuminated by light of wavelength 530 nm . The...
1. A slit 1.24 mm wide is illuminated by light of wavelength 530 nm . The diffraction pattern is seen on a screen 2.19 m away Find the distance between the first two diffraction minima on the same side of the central maximum in meters. 2. Monochromatic light with wavelength 539 nm fall on a slit with width 0.016 mm wide. The distance from the slit to a screen is 3.18 m. Consider a point on the screen 1.19cm from...
Monochromatic light of wavelength λ = 595 nm from a distant source passes through a slit...
Monochromatic light of wavelength λ = 595 nm from a distant source passes through a slit 0.460 mm wide. The diffraction pattern is observed on a screen 4.00 m from the slit. In terms of the intensity I0 at the peak of the central maximum, what is the intensity of the light at the screen the following distances from the center of the central maximum? a) 1.00mm b) 3.00mm c) 5.00 mm
Light of wavelength 492.0 nm passes through a 0.10-mm wide slit and forms a diffraction pattern...
Light of wavelength 492.0 nm passes through a 0.10-mm wide slit and forms a diffraction pattern on a screen 2.6 m away from the slit. Calculate the distance between the first and the third minima on the same side of the central maximum.
Monochromatic light of wavelength 477 nm from a distant source passes through a slit that is...
Monochromatic light of wavelength 477 nm from a distant source passes through a slit that is 0.0310 mm wide. In the resulting diffraction pattern, the intensity at the center of the central maximum (θ = 0∘) is 1.28×10−4 W/m2 . What is the intensity at a point on the screen that corresponds to θ = 1.20∘. Express your answer to three significant figures and include the appropriate units.
A single slit, 2000 nm wide, forms a diffraction pattern when illuminated by monochromatic light of...
A single slit, 2000 nm wide, forms a diffraction pattern when illuminated by monochromatic light of 520-nm wavelength. A. What is the largest angle from the central maximum at which the intensity of the light is zero? B. Find the angle at which the fourth minimum of the pattern occurs away from the central maximum
A single slit of width .25 mm is illuminated with monochromatic light of wavelength 505nm, and...
A single slit of width .25 mm is illuminated with monochromatic light of wavelength 505nm, and a diffraction pattern is formed on a screen 2.2m away from the slit. What is the width of the central maximum? If the width were increased, how would this change affect the size of the central maximum?
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.350 mm...
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.350 mm wide. The diffraction pattern is observed on a screen 2.55 m away. Define the width of a bright fringe as the distance between the minima on either side. a) What is the width of the central bright fringe? b) What is the width of the first bright fringe on either side of the central one?
Using a 697-nm wavelength laser, you form the diffraction pattern of a 0.105-mm wide slit on...
Using a 697-nm wavelength laser, you form the diffraction pattern of a 0.105-mm wide slit on a screen. You measure on the screen that the 11th dark fringe is 9.19 cm away from the center of the central maximum. How far is the screen located from the slit?
Parallel rays of monochromatic light with wavelength 587 nm illuminate two identical slits and produce an...
Parallel rays of monochromatic light with wavelength 587 nm illuminate two identical slits and produce an interference pattern on a screen that is 75.0 cm from the slits. The centers of the slits are 0.640 mm apart and the width of each slit is 0.434 mm. If the intensity at the center of the central maximum is 3.00×10−4 W/m2 , what is the intensity at a point on the screen that is 0.710 mm from the center of the central...
Monochromatic light of wavelength 466 nm from a distant source passes through a slit that is...
Monochromatic light of wavelength 466 nm from a distant source passes through a slit that is 0.0330 mm wide. In the resulting diffraction pattern, the intensity at the center of the central maximum (? = 0?) is 1.06×10?4 W/m2 . What is the intensity at a point on the screen that corresponds to ? = 1.20?.