Question

A parallel beam of light from a He-Ne laser, with a wavelength 633 nm, falls on...

A parallel beam of light from a He-Ne laser, with a wavelength 633 nm, falls on two very narrow slits 0.070 mm apart.

Part A

How far apart are the fringes in the center of the pattern on a screen 4.1 m away?

Homework Answers

Answer #1

for constructive interference in two slit experiment we know that

m* = d*sin

for small angles we know that

sin = = tan = y/D

So,

m* = d*y/D

y = m**D/d

Given values are:

D = distance between screen-slit = 4.1 m

d = distance between two slits = 0.070 mm

wavelength = 633 nm

Now distance between two consecutive fringes will be:

dy = dm**D/d

for two consecutive fringes, dm = 1 (since (m + 1) - m = 1)

So

dy = 1*633*10^-9*4.1/(0.070*10^-3)

dy = 0.0371 m = 37.1*10^-3 m

dy = distance between fringes = 37.1 mm

Please Upvote.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A parallel beam of light from a He-Ne laser, with a wavelength 633 nm, falls on...
A parallel beam of light from a He-Ne laser, with a wavelength 633 nm, falls on two very narrow slits 0.066 mm apart. Part A How far apart are the fringes in the center of the pattern on a screen 4.1 m away? Express your answer to two significant figures and include the appropriate units.
Monochromatic light falls on two very narrow slits 0.048 mm apart. Successive fringes on a screen...
Monochromatic light falls on two very narrow slits 0.048 mm apart. Successive fringes on a screen 5.50 m away are 6.8 cm apart near the center of the pattern. Determine the wavelength of the light. Determine the frequency of the light.
A red laser from the physics lab is marked as producing 632.8-nm light. When light from...
A red laser from the physics lab is marked as producing 632.8-nm light. When light from this laser falls on two closely spaced slits, an interference pattern formed on a wall several meters away has bright red fringes spaced 5.50 mm apart near the center of the pattern. When the laser is replaced by a small laser pointer, the fringes are 5.68 mm apart. Part A What is the wavelength of light produced by the pointer? Express your answer to...
A student holds a laser that emits light of wavelength 632.6 nm. The laser beam passes...
A student holds a laser that emits light of wavelength 632.6 nm. The laser beam passes though a pair of slits separated by 0.500 mm, in a glass plate attached to the front of the laser. The beam then falls perpendicularly on a screen, creating an interference pattern on it. The student begins to walk directly toward the screen at 3.00 m/s. The central maximum on the screen is stationary. Find the speed of the 50th-order maxima on the screen....
Light from a laser with a wavelength of 5.60 ✕ 102 nm is incident on (and...
Light from a laser with a wavelength of 5.60 ✕ 102 nm is incident on (and perpendicular to) a pair of slits separated by 0.320 mm. An interference pattern is formed on a screen 1.90 m from the slits. Find the distance (in mm) between the first and second dark fringes of the interference pattern (in mm)?
Light with a wavelength of 633 nm passes through a slit 6.38 ?m wide and falls...
Light with a wavelength of 633 nm passes through a slit 6.38 ?m wide and falls on a screen 1.60 m away. Find the distance on the screen from the central bright fringe to the third dark fringe above it. ___ cm Monochromatic light passes through two slits separated by a distance of 0.0332 mm. If the angle to the third maximum above the central fringe is 3.21 degrees, what is the wavelength of the light? __ nm
A laser beam with a wavelength of 490 nm passes through a double-slits with a separation...
A laser beam with a wavelength of 490 nm passes through a double-slits with a separation of 0.04 mm and falls on a screen 60 cm behind the slits. (a) Find the positions of the 1 st and 2nd order bright fringes respected to the center on the screen. (b) Find the position of the 1 st -order dark fringe respected to the center on the screen.
Laser light of an unknown wavelength falls incident on a pair of slits separated by 25.0...
Laser light of an unknown wavelength falls incident on a pair of slits separated by 25.0 µm. This produces an interference pattern on a screen 1.80 m away with the first-order bright fringe being 39.7 mm from the center of the central maximum. What is the wavelength of the laser light?
A red He-Ne laser with a wavelength of 632.8 nm illuminates two narrow horizontal slits with...
A red He-Ne laser with a wavelength of 632.8 nm illuminates two narrow horizontal slits with gap distance 0.200 mm. A pattern of interference bands then appears on a screen 1.00m from the columns. a) How far from the central maximum, in both radians and millimeters on the screen, is first minimum? b) How far in millimeters on the screen, is the fifth maximum from the central maximum? c) How big is the intensity in the fifth maximum compared to...
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.400 mm...
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.400 mm wide. The diffraction pattern is observed on a screen 3.25 m away. Define the width of a bright fringe as the distance between the minima on either side. Part A: What is the width of the central bright fringe? Part B: What is the width of the first bright fringe on either side of the central one?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT